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Abstract. A many identities group (MI-group, for short) is an algebraic structure which

is generalized a monoid with cancellation laws and is endowed with an invertible anti-

automorphism representing inversion. In other words, an MI-group is an algebraic structure

generalizing the group concept, except most of the elements have no inverse element. The con-

cept of a topological MI-group, as a preliminary study, in the paper ” Topological MI-group:

Initial study” was introduced by M. Holčapek and N. Škorupová, and we have given a more

comprehensive study of this concept in our two recent papers. This article is a continuation

of the effort to develop the theory of topological MI-groups and is focused on the study of

separation axioms and the isomorphism theorems for topological MI-groups. Moreover, some

conditions under which a MI-subgroup is closed will be investigated, and finally, the existence

of nonnegative invariant measures on the locally compact MI-groups are introduced.
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1. Introduction

Amany identities group (MI-group, in short) is a special algebraic structure in which certain

elements (called pseudoidentities) behave like the identity element and having a monoidal

substructure. The concept of MI-group, in the paper ”MI-algebras: A new framework for

arithmetics of (extensional) fuzzy number” has already been introduced. In this new algebraic

structure, the set of pseudoidentities play an essential role. These elements generalize the

role of the identity element, by which we can derive various properties of groups in a weaker

form. In the second section, we recall some basic definitions, examples, propositions and

theorems related to MI-groups and topological MI-groups. In the third section, under some

special conditions, the separation axioms in topological MI-groups are investigated. In the

fourth section the isomorphism theorems for topological MI-groups are expressed. The fifth

section present some results about closed MI-subgroups. The final two sections is devoted to

the existence of nonnegative invariant measures on the locally compact MI-groups and our

conclusions.

2. Preliminaries

An MI-group is based on a generalization of the concept of monoid that satisfies the

cancellation laws and is endowed with an invertible anti-automorphism representing inversion.

Pseudoidentities elements play an important and undeniable role, i.e. elements that possess

similar properties to the identity element. The most important types of such elements are

the form xx−1, where x ∈ G. In this section, we first discuss the definitions and important

concepts of the MI-groups.

Definition 2.1. (Definition 2.1 [8]) A triplet (G, ⋆, −1, e) is said to be an MI-group if it

satisfies the following axioms:

(1) (G, ⋆) is a monoid,

(2) −1 : G→ G is an involutive anti-automorphism, i.e., ∀x, y ∈ G, it holds

(i)(x ⋆ y)−1 = y−1 ⋆ x−1,

(ii)(x−1)−1 = x,

(3) x ⋆ (y ⋆ y−1) = (y ⋆ y−1) ⋆ x for any x, y ∈ G,

(4) the cancellation laws hold, i.e., ∀x, y, z ∈ G,

x ⋆ y = x ⋆ z =⇒ y = z (left cancellation law),

y ⋆ x = z ⋆ x =⇒ y = z (right cancellation law).

Typically, we write (G, ⋆, −1, e) = G and x ⋆ y = xy. Let PG be the least submonoid of G

that contains the set {xx−1 : x ∈ G}. Elements of PG are called pseudoidentity elements, e

is called an (strong) identity element and the involutive anti-automorphism −1 of G will be
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called the inversion of G. By Lemma 2.1 of [8], we have

PG = {x1x−1
1 x2x

−1
2 ...xnx

−1
n | x1, x2, ..., xn ∈ G,n ∈ N}.

Moreover, sx = xs for every x ∈ G and s ∈ PG (Axiom (3) of definition) . Also by Lemmas

2.2 and 2.3 of [8], we get

i) xx−1 = x−1x,∀x ∈ G

ii) s = s−1, ∀s ∈ PG.

The recent feature shows that the elements PG are symmetric. If PG = {e}, then G has a

group structure. It should be noted that the above definition of an MI-group and PG can be

based on the definition 2.1 from [6].

For MI-groups G and H, a mapping f : G→ H is a homomorphism of MI-groups, provided

that

(1) f(x ⋆G y) = f(x) ⋆H f(y), ∀x, y ∈ G,

(2) f(eG) = eH ,

(3) f(x−1) = f(x)−1 ∀x ∈ G.

Let H be a non- empty subset of G. The set H is said to be closed in G, if xs ∈ H implies

x ∈ H whenever x ∈ G and s ∈ PG. The set

H
G
=

∩
{K ⊆ G | K is closed in G and H ⊆ K}

is called a closure of H in G. By theorem 3.1 of [2],

H
G
= {x ∈ G | ∃s ∈ PG : xs ∈ H}.

Definition 2.2. (Definition 2.8 [6]) Let G = (G, ⋆, −1, e) be an MI-group, and H ⊆ G . If

H = (H, ⋆, −1, e) is itself an MI-group under the product and inversion of G, then H is said

to be an MI-subgroup of G, which is denoted by H ≤ G.

According to Theorem 2.4 of [8], H is an MI-subgroup of G if and only if e ∈ H and

xy−1 ∈ H for each x, y ∈ H. By theorem 2.3 of [6], PG is an MI-subgroup of G. By Lemma

2.1 of [8], PG is also an abelian MI-subgroup of G. An MI-subgroup H of an MI-group G that

contains PG is said to be full and is denoted by H ≤f G. We say H is a non-full MI-subgroup,

if H is not a full MI-subgroup.

Example 2.3. Let G = {[a, b] | a, b ∈ R, a ≤ b} be the set of all closed real intervals. By

example 2.2 of [6], we know (G,+,−, [0, 0]) under algebraic actions

[a, b] + [c, d] = [a+ c, b+ d],

−[a, b] = [−b,−a],
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is an additive abelian MI-group. Obviously, PG = {[−x, x] | x ≥ 0}.

Example 2.4. Let G+ = {[a, b] | a, b ∈ R+, a ≤ b} be the set of all closed real intervals of

positive real numbers. As in Example 2.3, it is easy to see that G+ under algebraic actions .

and −1 defined as follows is an abelian multiplicative MI-group:

[a, b].[c, d] = [a.c, b.d],

[a, b]−1 = [1/b, 1/a].

In this case we will write G+ = (G+, ., −1, [1, 1]), where [1, 1] is the identity element of G+.

Now, like the topological groups, we have the following definition:

Definition 2.5. Suppose that G is an MI-group, whose underlying space is a topological

space. Then G is called a topological MI-group if (x, y) → x ⋆ y maps G × G onto G and

x→ x−1 maps G on G continuously.

For example, every MI-group G = (G, ⋆, −1, e) endowed with the discrete topology is a

topological MI-group.

Example 2.6. (Internal topology on MI-groups)(Definition 3.1 of [1])

Let G be an MI-group, and U subset of G. We say that U is open in G, if U cG = U c, i.e.

U c is closed in G from the MI-groups point of view, where U c is complement of U in G.

According to this definition, we get

U c = {x ∈ G | ∃ s ∈ PG xs ∈ U c},

or

U = {x ∈ G | ∀s ∈ PG xs ∈ U} = {x ∈ G | xPG ⊆ U}.

So according to this relationship, to prove the openness of a set is enough to show that

U ⊆ {x ∈ G | xPG ⊆ U}. Obviously U is open if and only if UPG = U . It is clear that the

family of such subsets of G, including ∅ and G, has the properties of a topology. This topology

is called the Internal topology on an MI-group.

It is obvious that PG and every full MI-subgroup of G are open. The subset U of G is closed

if and only if U
G
= U , that is, the topological closure and the MI-group closure of U are the

same. Also every neighborhood of e contains PG. By Propositions 3.2 and 3.3 of [1], each

MI-group G under this topology, becomes a topological MI-group satisfying

(1) U is open in G and x ∈ G imply xU is open in G .
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Also by Remark 3.5 of [1], PG is the smallest open subset of G which contains e. Therefore

for each x ∈ G, xPG is the smallest and simplest open subset of G containing x. In fact,

according to the definition of open sets in this topology, each open set of x, clearly including

xPG.

Throughout the text, we say U is closed in an MI-group G, if U
G
= U , while we say U is

topologically closed in G, if U = U .

3. Separation axioms in topological MI-groups

In the theory of topological groups, it is known that each topological group satisfying the T0

separation axiom is also Hausdorff and hence regular. But in topological MI-groups, this is not

necessarily true. Indeed, as will be seen , the topological MI-group G = {[a, b] | a, b ∈ R, a ≤ b}
of real intervals under the internal topology is a T0 space, but is not a Hausdorff space. Before

that, we first recall the separation principles in topological spaces.

Definition 3.1. Let X be a topological space.

i) X is said to be T0 space if it satisfies the T0 axiom, i.e. for each x, y ∈ X such that x ̸= y

there is an open set U ⊆ X so that U contains one of x and y but not the other.

ii) A space X is a T1 space or Frechet space if it satisfies the T1 axiom, i.e. for each x, y ∈ X

such that x ̸= y, there are two open subset U and V so that x ∈ U , y /∈ U and y ∈ V , x /∈ V .

iii) A space X is a T2 space or Hausdorff space if it satisfies the T2 axiom, i.e. for each

x, y ∈ X such that x ̸= y there are two disjoint open subsets U and V of X so that x ∈ U and

y ∈ V .

iv) A space X is regular if for each x ∈ X and each closed C ⊆ X such that x /∈ C, there

are two disjoint open sets U, V ⊆ X so that x ∈ U and C ⊆ V . A regular T1 space is called a

T3 space.

v) A space X is normal if for each pair A and B of disjoint closed subsets of X, there is a

pair U and V of disjoint open subsets of X so that A ⊆ U , B ⊆ V . A normal T1 space is

called a T4 space.

If a topological MI-group is a T0 space, we say that it is a T0 MI-group. We begin this

section by stating and proving the above claim.

Proposition 3.2. Let G be the topological MI-group G = {[a, b] | a, b ∈ R, a ≤ b} of real

intervals under the internal topology. Then G is a T0 MI-group, but it is not a Hausdorff

topological MI-group.

Proof. By example 2.3, PG = {[−x, x] | x ≥ 0}. Therefore, according to the last paragraph of

the previous section, for each [a, b] ∈ G,

[a, b] + PG = {[a− x, b+ x] | x ≥ 0}
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is the smallest and simplest open subset of G containing [a, b]. So just enough, consider such

open subsets of G. For every [a, b], [c, d] ∈ G such that [a, b] ̸= [c, d], we have

[a, b] + PG ∩ [c, d] + PG ̸= ∅ ⇐⇒ ∃x, y ≥ 0, [a− x, b+ x] = [c− y, d+ y]

⇐⇒ a+ b = c+ d.

i.e. two intervals [a, b] and [c, d] have the same center. Therefore, non-centered intervals are

separated by open subsets [a, b] + PG and [c, d] + PG of G . But for intervals [a, b] and [c, d]

with the same center, one is inside the other. For example, if the interval [a, b] is within the

interval [c, d], then for x = a− c ≥ 0 we have c = a− x and d = b+ x. Therefore

[c, d] = [a, b] + [−x, x] ∈ [a, b] + PG,

while [a, b] /∈ [c, d] + PG. Indeed, there is no real non-negative number x, as [a, b] = [c, d] +

[−x, x]. Therefore [c, d] has an open neighborhood that does not contain [a, b]. However, only

one of these has an open neighborhood that does not contain another. Thus G is a T0 MI-

group. On the other hand, every open neighborhood of [a, b], obviously includes [a, b] + PG

and so it includes [c, d]. Therefore, the internal topology on G is not Hausdorff.

In general, for the internal topology on MI-groups, we have the following important fact:

Theorem 3.3. Every T0 topological MI-group under the internal topology is a Hausdorff space

if and only if PG = {e}.

Proof. By Remark 3.5 of [1], every neighborhood of e contains PG. Therefore, identity element

e can not be separated from any member of PG unless PG = {e}, i.e. the MI-group G has a

group structure.

Remark 3.4. By previous theorem, every topological MI-group G under the internal topology

is Hausdorff if and only if it has a group structure. In other words, the existence of a topological

property, like Hausdorff, has altered its algebraic structure. It should be noted that in this

case each subset of G is open, so the internal topology changes to a discrete topology on G.

Indeed, for each subset U of G, we have clearly U = {x | x{e} ⊆ U}.

From now on, we focus on topological MI-groups satisfying (1), i.e. if U be an open basis

at e, then the families {xU} and {Ux}, where x runs through all elements of G and U runs

through all elements of U , are open bases for G in each x ∈ G. Therefore for each open subset

U of G and every x ∈ U , there is a neighborhood V of e such that xV ⊆ U .

In view of the above discussion, it seems that an additional condition is necessary for a T0

topological MI-group to be Hausdorff. Accordingly, we define the following condition on a

topological MI-group and examine the separation axioms.
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Definition 3.5. A topological MI-Group G is said to have the property ⋆, if for every open

subset U of G and x ∈ U , there is a neighborhood V of x in G such that V
G ⊆ U .

Based on this property, we will have the following important theorem in relation to the

principles of separation in topological MI-groups under the desired topology.

Theorem 3.6. Let G be a T0 topological MI-group with property ⋆. Then G is Hausdorff and

regular space.

Proof. Since G is a T0 space, for every x, y ∈ G such that x ̸= y there is an open set U ⊆ G so

that U contains one of x and y but not the other. For example if x ∈ U and y /∈ U , then by

property ⋆, there is a neighborhood V of x such that V
G ⊆ U . Also there are neighborhoods

W and V0 of e such that V = xW and V 2
0 ⊆W . This implies that xV0 and yV −1

0 are disjoint

neighborhoods of x and y, Respectively. Indeed if z ∈ xV0 ∩ yV −1
0 , then z = xv0 = yv−1

1 for

some v0, v1 ∈ V0. Hence, we obtain

yv−1
1 v1 = xv0v1 ∈ xV 2

0 ⊆ xW = V.

Since v1v
−1
1 ∈ PG, we find that y ∈ V

G
, which implies that y ∈ U , that this is a contradiction.

Therefore G is Hausdorff. In relation to regularity, let U be a neighborhood of e in G. Hence

there are neighborhoods V and W of e such that V
G ⊆ U and W 2 ⊆ V . We can also assume

that W is symmetric, i.e. W = W−1. Then if x ∈ W , we have xW ∩W ̸= ∅. Therefore

xw1 = w2 for some w1, w2 ∈ W , and so xw1w
−1
1 = w2w

−1
1 ∈ WW−1 = W 2 ⊆ V . Since

w1w
−1
1 ∈ PG, we find that x ∈ V

G ⊆ U , and so W ⊆ U , i.e. G satisfies the axiom of regularity

at e. For other points of G, let U be a neighborhood of an arbitrary member x ∈ G. By

assumption, there is a neighborhood V of x such that V
G ⊆ U . Also there are neighborhoods

W and V0 of e such that V = xW and V 2
0 ⊆W , Where V0 can be selected symmetrically. Now

if y ∈ xV0, then yV0 ∩ xV0 ̸= ∅ and thus yv1 = xv2 for some v1, v2 ∈ V0. Hence, we will have

yv1v
−1
1 = xv2v

−1
1 ∈ xV0V

−1
0 = xV 2

0 ⊆ xW = V.

Since v1v
−1
1 ∈ PG, we find that y ∈ V

G ⊆ U and so xV0 ⊆ U , where xV0 is a neighborhood of

x. Therefore G satisfies the axiom of regularity at every point.

The following Lemma plays an important role in the study of topological MI-groups.

Lemma 3.7. ([1], Proposition 3.6) Let G be a topological MI-group, and U be a open subset

of it. Then U
G

is also open.

Proof. Let x ∈ U
G
. Then there is s ∈ PG such that xs ∈ U . Since U is open, there exist a

neighborhood V of e such that xsV ⊆ U and so xV s ⊆ U . Hence xV ⊆ U
G
. Therefore x is

an interior of U
G
.
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Theorem 3.8. Let G be a topological MI-group with the property ⋆ and let U = {Uα}α∈I be

an open basis at e. Then U ′ = {Uα
G}α∈I is also an open basis at e.

Proof. By previous Lemma, for every α ∈ I, Uα
G
is also an open subset of G. By assumption,

for each neighborhood U of e, there is a neighborhood V of e such that V
G ⊆ U . Since U is

an open basis at e, there exists Uα ∈ U such that Uα ⊆ V and so Uα
G ⊆ V

G ⊆ U . Thus the

proof is completed.

Remark 3.9. Based on the previous theorem, for the topological MI-groups with property ⋆,

we can consider the bases at e in which each member of the basis is closed in MI-group, i.e.

Uα
G
= Uα.

Theorem 3.10. Let G be a topological MI-group with property ⋆. Then for each subset K of

G, K
G

is compact if and only if K is compact.

Proof. Let {Uα}α∈I be an open cover of K
G
. Then K

G ⊆ ∪
α∈I

Uα and so for every x ∈ K
G

there is αx ∈ I such that x ∈ Uαx . By assumption there is a neighborhood Vαx of x such

that Vαx

G ⊆ Uαx . Therefore, it is clear that {Vαx}αx∈I is also an open cover of K
G

and so

K. Since K is compact, we may take a finite number of subsets Vα1 , Vα2 , ..., Vαn such that

K ⊆
n
∪
i=1
Vαi . So for each x ∈ K

G
there is s ∈ PG such that xs ∈ K and hence xs ∈ Vαi for some

αi. Therefore x ∈ Vαi

G
. Since Vαi

G ⊆ Uαi , we have x ∈ Uαi and so K
G ⊆

n
∪
i=1
Uαi . Therefore

every open cover of K
G

has a finite subcover, i.e. K
G

is compact. On the contrary, suppose

that K
G

is compact and {Uα}α∈I be an open cover of K. As before, we can choose an open

cover {Vα}α∈I of K such that for each α ∈ I, Vα
G ⊆ Uα. Then we will have

K
G ⊆ ∪

α∈I
Vα

G ⊆ ∪
α∈I

Vα
G
,

where recent inclusion is simply proven. Since by Lemma 3.7, for every α ∈ I, Vα
G
is also an

open subset of G, family {Vα
G}α∈I is an open cover of K

G
. Hence there are α1, α2, ..., αn ∈ I

such that K
G ⊆

n
∪
i=1
Vαi

G
and so we have K ⊆

n
∪
i=1
Vαi

G ⊆
n
∪
i=1
Uαi , which implies that K is

compact.

Remark 3.11. If the internal topology has ⋆ property, then PG is closed. Indeed PG is an

open subset of G that contains e and so there is a neighborhood V of e such that V
G ⊆ PG.

Therefore PG
G ⊆ V

G ⊆ PG, i.e. PG
G
= PG. Hence PG is an open and closed subset of G. If

G ̸= PG, obviously G is unconnected under the internal topology. With the same argument,

it is easy to see that for each x ∈ G, xPG is also closed.
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Theorem 3.12. Let G be a topological MI-group with property ⋆. Then every open MI-

subgroup H of G is closed. Also it is closed in MI-group G.

Proof. Let x ∈ H
G
. Thus there is s ∈ PG such that xs ∈ H. Since H is open, by assumption

there exists a neighborhood V of xs such that V
G ⊆ H. But xs ∈ V implies that x ∈ V

G

and so x ∈ H. Therefore H
G

= H, i.e. H is closed in MI-group. On the other hand, for

each x ∈ G, xH is open and so by Lemma 3.7, xH
G

is also open. Hence by relationship

H
G
= (

∪
xH

G ̸=H
G

xH
G
)c, H

G
and so H is closed.

We finish this section by expressing a new separation principle for topological MI-groups.

Definition 3.13. A topological MI-group G is said to be T ∗
0 space, if for every x, y ∈ G such

that x ̸= y there is an open subset U which is closed in G( i.e. U
G
= U) so that U contains

one of x and y but not the other.

If a topological MI-group is a T ∗
0 space, we say that it is a T ∗

0 MI-group. Apparently, a T ∗
0

MI-group is also T0 MI-group. It’s easy to see that every T0 MI-group with ⋆-property is also

a T ∗
0 MI-group. The importance of this separation principle is that under it, the topological

MI-group G will be Hausdorff:

Theorem 3.14. Let G be a T ∗
0 MI-group. Then G is also Hausdorff.

Proof. Since G is a T ∗
0 space, for each x, y ∈ G such that x ̸= y there is an open subset U of G

which is closed in G so that U contains one of x and y but not the other. For example, suppose

that x ∈ U and y /∈ U . Also there are neighborhoods V and W of e such that U = V x and

W 2 ⊆ V . This implies thatWx andW−1y are disjoint neighborhoods of x and y, respectively.

In fact if z ∈Wx ∩W−1y, then z = w1x = w−1
2 y for some w1, w2 ∈W . Hence we obtain

w2w
−1
2 y = w2w1x ∈W 2x ⊆ V x = U.

Since w2w
−1
2 ∈ PG, we find that y ∈ U

G
= U , that this is a contradiction. Therefore G is

Hausdorff.

Anyway, we’ll have

(T0, ⋆ property) =⇒ T ∗
0 =⇒ T0

But it seems that the principle of regularity can not be derived from this principle. However,

this seems to be the weakest principle of separation that can be placed on any topological

MI-group so that it is still Hausdorff. It is interesting to note that in the internal topology,

the above principle is equivalent to Hausdorff.
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4. The isomorphism Theorems in topological MI-groups

In this section we discuss about the isomorphism theorems in topological MI-groups.

Theorem 4.1. Let G and G̃ be topological MI-groups with identities e and ẽ, respectively, such

that P
G̃
is closed in MI-group G̃, i.e P

G̃

G̃
= P

G̃
. Let f be an open, continuous homomorphism

of G onto G̃. Then H = kerf is a normal MI-subgroup of G and the sets f−1(x̃P
G̃

G̃
), x̃ ∈ G̃,

are exactly the distinct closure of cosets of H in G, so that the mapping x̃→ f−1(x̃P
G̃

G̃
) = Φ(x̃)

is an open, continuous homomorphism of G̃ onto the MI-group G/H with the quotient topology

and Ker Φ = P
G̃
. Also Φ induces an homeomorphism and isomorphism of G̃/P

G̃
onto G/H.

Proof. By theorem 4.14 of [6], kerf ▹G and so G/H is a quotient MI-group. At first for every

y, y′ ∈ f−1(x̃P
G̃

G̃
), we show that yH

G
= y′H

G
. Since f(y), f(y′) ∈ x̃P

G̃

G̃
, there are s′, t′ ∈ P

G̃

such that f(y)s′, f(y′)t′ ∈ x̃P
G̃

and hence there are s1, t1 ∈ P
G̃

such that f(y)s′ = x̃s1 and

f(y′)t′ = x̃t1. But f is surjective and so is strong, i.e. there are s, t ∈ PG such that s′ = f(s)

and t′ = f(t), so that f(ys) = x̃s1 and f(y′t) = x̃t1. Accordingly, we will see

f(yy′
−1
st−1) = f(yst−1y′

−1
) = f(ys(y′t)−1) = f(ys)f(y′t)−1

= x̃s1(x̃t1)
−1 = x̃s1t

−1
1 x̃−1 = x̃x̃−1s1t

−1
1 ∈ P

G̃
.

Therefore yy′−1st−1 ∈ Kerf = H. Since st−1 ∈ PG, yy
′−1 ∈ H

G
and so yH

G
= y′H

G
. On the

other hand, for y ∈ f−1(x̃P
G̃

G̃
) fixed , according to this relation for every y′ ∈ f−1(x̃P

G̃

G̃
), we

have y′ ∈ yH
G
. Hence f−1(x̃P

G̃

G̃
) ⊆ yH

G
. Conversely, for each u ∈ yH

G
, there is s ∈ PG such

that us ∈ yH and so us = yh, for a member h ∈ H. Since f(h), f(s) ∈ P
G̃
and f(y) ∈ x̃P

G̃

G̃
,

we obtain

f(u)f(s) = f(y)f(h) ⊆ x̃P
G̃

G̃
P
G̃
⊆ x̃P

G̃

G̃
.

Therefore f(u) ∈ x̃P
G̃

G̃
, and consequently u ∈ f−1(x̃P

G̃

G̃
), i.e. yH

G ⊆ f−1(x̃P
G̃

G̃
). Thus

f−1(x̃P
G̃

G̃
) = yH

G
and this is independent of the selection of each member of f−1(x̃P

G̃

G̃
).

Let Ũ be an open subset of G̃. We will show that Φ(Ũ) is open in G/H. It is sufficient to

show that, φ−1(Φ(Ũ)) is open in G. But we notice that

φ−1(Φ(Ũ)) = φ−1{f−1(x̃P
G̃

G̃
) : x̃ ∈ Ũ} = ∪

x̃∈Ũ
f−1(x̃P

G̃

G̃
) = f−1(ŨP

G̃

G̃
),

where the recent equality is simply obtained from the relation f−1(∪
u
Au) = ∪

u
f−1(Au). Accord-

ingly, since ŨP
G̃
is open in G̃, hence ŨP

G̃

G̃
is also open and so by continuity of f , f−1(ŨP

G̃

G̃
)

is open in G. Therefore Φ is an open mapping. Let {uHG
: u ∈ U} be an open subset of G/H,

where U is open in G. Hence we have

Φ−1{uHG
: u ∈ U} = {x̃ : ∃u ∈ U s.t f−1(x̃P

G̃

G̃
) = uH

G}.
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But the recent set is equal to f(UPG)
G̃
. Since UPG is open in G and f is an open mapping,

the set f(UPG) is open in G̃ and so by lemma 3.7, f(UPG)
G̃
is open. About the last equality,

for every x̃ such that f−1(x̃P
G̃

G̃
) = uH

G
we see that u ∈ f−1(x̃P

G̃

G̃
) and so f(u) ∈ x̃P

G̃

G̃
.

Therefore there are s, t ∈ P
G̃

such that f(u)s = x̃t. Since f is epimorphism, hence is strong

and as a result there is s1 ∈ PG such that s = f(s1) and

x̃t = f(u)s = f(u)f(s1) = f(us1) ∈ f(UPG),

i.e. x̃ ∈ f(UPG)
G̃
. Conversely if x̃ ∈ f(UPG)

G̃
, then there is s ∈ P

G̃
such that x̃s ∈ f(UPG).

Therefore there are u ∈ U and t ∈ PG such that x̃s = f(ut). Since f(t) ∈ P
G̃
, we can see

f(u)f(t) = f(ut) = x̃s ∈ x̃P
G̃

=⇒ f(u) ∈ x̃P
G̃

G̃
.

Hence u ∈ f−1(x̃P
G̃

G̃
), i.e. f−1(x̃P

G̃

G̃
) = uH

G
. Thus Φ is continuous. Also Φ is surjective.

In fact for every aH
G ∈ G/H, it is sufficient that x̃ = f(a). Then f(a) = x̃ ∈ x̃P

G̃

G̃
and so

a ∈ f−1(x̃P
G̃

G̃
), i.e. aH

G
= f−1(x̃P

G̃

G̃
) = Φ(x̃). Now we will show that Φ is a homomorphism.

For each x̃, ỹ ∈ G̃, We have to show that Φ(x̃ỹ) = φ(x̃) ⋆ Φ(ỹ) or

f−1(x̃ỹP
G̃

G̃
) = f−1(x̃P

G̃

G̃
) ⋆ f−1(ỹP

G̃

G̃
).

Let x ∈ f−1(x̃P
G̃

G̃
) and y ∈ f−1(ỹP

G̃

G̃
). Then f−1(x̃P

G̃

G̃
) = xH

G
and yH

G
= f−1(ỹP

G̃

G̃
).

Also we have f(x) ∈ x̃P
G̃

G̃
and f(y) ∈ ỹP

G̃

G̃
and so there are t′, s′ ∈ P

G̃
such that f(x)t′ ∈ x̃P

G̃

and f(y)s′ ∈ ỹP
G̃
. Therefore there are t⋆, s⋆ ∈ P

G̃
such that f(x)t′ = x̃t⋆ and f(y)s′ = ỹs⋆.

As a result

f(xy)t′s′ = f(x)f(y)t′s′ = x̃ỹt⋆s⋆ ∈ x̃ỹP
G̃
.

Since t′s′ ∈ P
G̃
, we conclude that f(xy) ∈ x̃ỹP

G̃

G̃
or xy ∈ f−1(x̃ỹP

G̃

G̃
). Hence xyH

G
=

f−1(x̃ỹP
G̃

G̃
). Finally since H is normal MI-subgroup of G, we can see that

f−1(x̃P
G̃

G̃
) ⋆ f−1(ỹP

G̃

G̃
) = xH

G
⋆ yH

G
= xyH

G
= f−1(x̃ỹP

G̃

G̃
).

Therefore Φ is an open, continuous homomorphism of G̃ onto the MI-group G/H with the

quotient topology.

Also by lemma 4.11 of [6], PG/H = {HG} and so we will have

Ker Φ = {x̃ : f−1(x̃P
G̃

G̃
) = H

G}.

By theorem 2.5 of [6], P
G̃
⊆ Ker Φ. Conversely if x̃ ∈ Ker Φ, then f−1(x̃P

G̃

G̃
) = H

G
. Since

e ∈ H
G
, we have f(e) = ẽ ∈ x̃P

G̃

G̃
and so ẽP

G̃

G̃
= x̃P

G̃

G̃
or x̃ ∈ P

G̃

G̃
= P

G̃
. Therefore

Ker Φ = P
G̃
. Accordingly, since for every x̃ ∈ P

G̃
,

Φ(x̃) = f−1(x̃P
G̃

G̃
) = H

G
,
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hence Φ restricted to P
G̃

is constant and so by theorem 2.7 of [2], Φ is not monomorphism.

But by theorem 5.1 of [2], G̃/P
G̃

∼= G/H. Finally, applying Φ instead of f in the first part,

it is easy to see that there is an open, continuous homomorphism Φ′ of G/H onto G̃/P
G̃
and

KerΦ′ = PG/H = {HG}. Hence Φ′ is injective and so is isomorphism. Also since Φ′ is open,

Φ′−1 is continuous and so Φ′ is a homeomorphism of G/H onto G̃/P
G̃
.

It is necessary to mention that a homomorphism f : G → H of MI-groups that satisfies

f(PG) = PH , is called the strong homomorphism of MI-groups. According to the theorem 2.6

of [6], every epimorphism is strong.

The second isomorphism theorem for groups has a complete analogue for topological MI-

groups, as follows.

Theorem 4.2. Let G and G̃ be topological MI-groups with identities e and ẽ, respectively, such

that P
G̃
is closed in MI-group G̃, i.e P

G̃

G̃
= P

G̃
. Let f be an open, continuous homomorphism

of G onto G̃. Let H̃ be any normal full MI-subgroup of G̃, H = f−1(H̃), and H ′ = Ker(f).

Then H ▹ G, H ′ ▹ H, and the MI-groups G/H, G̃/H̃, and (G/H ′)/(H/H ′) are topologically

isomorphic.

Proof. We first show that H is a normal MI-subgroup of G. Let y ∈ xHx−1
G
. Then there are

s ∈ PG and h ∈ H such that ys = xhx−1. Since H̃ is normal in G̃, we will have

f(ys) = f(x)f(h)f(x)−1 ∈ f(x)H̃f(x)−1 ⊆ f(x)H̃f(x)−1
G̃
⊆ H̃

G̃
.

Therefore there is t̃ ∈ P
G̃

such that f(ys)t̃ ∈ H̃. Since f is strong, t̃ = f(t) for some t ∈ PG.

Hence f(yst) ∈ H̃ and so yst ∈ H, i.e. y ∈ H
G
, as st ∈ PG. Therefore xHx−1

G ⊆ H
G

and

so by Theorem 4.2 of [6], H is a normal MI-subgroup of G. Also for each x ∈ H ′, we have

f(x) ∈ P
G̃
⊆ H̃, so x ∈ H, i.e. H ′ ≤ H ≤f G. Since by theorem 4.14 of [6], H ′ ▹G, by theorem

4.6 of [6], H ′ ▹ H. Also it is easy to see H/H ′ ▹ G/H ′.

Now let ψ be the natural mapping of G̃ onto G̃/H̃. It is known that ψ is an open, continuous

homomorphism and hence ψ ◦ f is an open, continuous homomorphism of G onto G̃/H̃ with

kernel H
G
. Therefore by the previous theorem, G/H

G
is topologically isomorphic with G̃/H̃.

But in the other hand, by the lemma 4.1 of [6] for each x ∈ G we have xH
G
G

= xH
G
. Hence

G/H
G
= G/H and so the MI-groups G/H and G̃/H̃ are topologically isomorphic.

According to the previous theorem, the mapping f will induce an open and continuous

homomorphism Φ(x̃) = f−1(x̃P
G̃

G̃
) of G̃ onto the MI-group G/H ′ with the quotient topology

and Φ−1(H/H ′) = H̃. Using the argument of the preceding paragraph, G̃/H̃ is topologically

isomorphic to (G/H ′)/(H/H ′).
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5. Some more results about MI-subgroups

In this section, we describe some other features of MI-subgroups of a topological MI-group.

Specifically, these results show that under what conditions a MI-subgroup will be closed.

To this end, first we will explain and prove the following important result which shows the

connection between the algebraic and topological closures.

Proposition 5.1. Suppose G is a topological MI-group satisfying (1) and U be a subset of G.

Then (U)
G
⊆ (U

G
).

Proof. Suppose that x ∈ (U)
G
. Then xs ∈ U for some s ∈ PG. Therefore, for each neighbor-

hood xsV of xs we have xsV ∩ U ̸= ∅, where V is a neighborhood of e in G. Hence xsv = u

for some u ∈ U and v ∈ V . Then xvs = u ∈ U and so xv ∈ U
G
, i.e. xV ∩ UG ̸= ∅. Therefore

x ∈ (U
G
).

Under the condition ⋆, it is easy to see the converse of the previous proposition is also valid:

Proposition 5.2. Let U be a subset of a topological MI-group G with property ⋆ . Then

(U
G
) ⊆ (U)

G
.

Proof. Let x ∈ (U
G
). Then for every neighborhood V of e, we have xV ∩ U

G ̸= ∅ and so

xvs ∈ U for some s ∈ PG and v ∈ V . By property ⋆, there is a neighborhood W of xvs such

thatW
G ⊆ U . On the other hand, since xvs ∈W we have xv ∈W

G
and so xv ∈ U . Therefore

xV ∩ U ̸= ∅, i.e. x ∈ U and so x ∈ (U)
G
.

Corollary 5.3. Let G be a topological MI-group with property ⋆. Then for each subset U of G

by the above propositions, we have (U)
G
= (U

G
). Therefore, for every subset U of G such that

U
G
= U , we have (U)

G
⊆ U and so we will have (U)

G
= U , i.e. U is also closed in MI-group

G. Similarly, if U is topologically closed then U
G

is also topologically closed.

Theorem 5.4. Let G be a topological MI-group and H a MI-subgroup of G such that H
G
= H

and U∩H = U∩H, for some neighborhood U of e in G and U∩H ̸= ∅. Then H is topologically

closed in G.

Proof. Since H is closed in MI-group G, by the previous corollary H is also closed in G, i.e.

(H)
G

= H. Now suppose that x ∈ H. If x ∈ U then x ∈ U ∩ H and so by assumption

x ∈ U ∩H, i.e. x ∈ H. If x /∈ U then for neighborhood xU of x, we have xU ∩H ̸= ∅. Hence

xu = h, for some u ∈ U and h ∈ H. Therefore x−1xu = x−1h ∈ H and so u ∈ (H)
G
= H, i.e.

u ∈ U ∩H. Hence by assumption u ∈ U ∩H and so u ∈ H. Since xuu−1 = hu−1 ∈ H, we will

have x ∈ H
G
= H. However x ∈ H and hence H = H.
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Theorem 5.5. Let G be a topological MI-group and H a discrete MI-subgroup of G such that

H
G
= H. Then H is closed.

Proof. By assumption, since e is an isolated point of H, there is a neighborhood V of e such

that V ∩ H = {e}. If x ∈ V ∩ H, then x ∈ H and x ∈ V . Let xα, α ∈ D, be a net in H

such that xα → x. Therefore there is a α0 ∈ D such that xα ∈ V for each α ≽ α0. Hence

xα ∈ V ∩ H = {e}, i.e. xα = e. Thus x = e and so V ∩ H = {e}, i.e. V ∩ H = V ∩ H.

Therefore, by theorem 5.4, H is closed.

Theorem 5.6. Let G be a topological MI-group and H a MI-subgroup of G such that H
G
= H.

If there is a neighborhood U of e including PH such that U ∩ H is topologically closed in G

then H is also topologically closed.

Proof. Let x ∈ H. Hence xx−1 ∈ PH and so by assumption xx−1 ∈ U . Thus there exist a

neighborhood V of e such that xx−1V ⊆ U . Let W be a symmetric neighborhood of e in G

such that W 2 ⊆ V . Suppose that xα, α ∈ D, be a net in H such that xα → x. Since x−1 ∈ H,

there is y ∈Wx−1∩H. Also there is a α0 ∈ D such that xα ∈ xW for each α ≽ α0. Therefore

for every α ≽ α0, we have

yxα ∈ (Wx−1)(xW ) = xx−1W 2 ⊆ xx−1V ⊆ U.

Therefore yxα ∈ U ∩H. Since yxα → yx and U ∩H is closed, we have yx ∈ U ∩H, i.e. yx ∈ H

. Finally, since y−1yx ∈ y−1H ⊆ H, we will have x ∈ H
G
= H, which implies that H ⊆ H.

Therefore H is closed.

Theorem 5.7. Let G be a topological MI-group such that G =
∞
∪

n=1
V n, for every neighborhood

V of e. If there is a discrete normal MI-subgroup H of G that is closed in G, then PG = {e}
and H ⊆ Z(G), where Z(G) is the center of G.

Proof. By hypothesis, for each h ∈ H there is a neighborhood U of e such that hU ∩H = {h}.
According to the continuity of the mapping x → x−1hx at e, there is a neighborhood V of e

such that V −1hV ⊆ hU . Therefor x−1hx ∈ hU for every x ∈ V . On the other hand, since H is

normal, we have x−1Hx
G
= H

G
= H for each x ∈ V . Consequently, x−1hx ∈ hU ∩H = {h},

i.e. x−1hx = h for every x ∈ V . Since G =
∞
∪

n=1
V n, this is valid for every x ∈ G. Indeed, for

each x ∈ G there are v1, v2, ..., vk ∈ V such that x = v1v2...vk and so after k steps, we will

have

x−1hx =

h︷ ︸︸ ︷

v−1
k ...

... h︷ ︸︸ ︷
v−1
2

h︷ ︸︸ ︷
v−1
1 hv1v2...vk = h.
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Therefore x−1hx = h, for each x ∈ G and h ∈ H. Especially, for h = e we have x−1x = e, i.e.

PG = {e}. Hence G have a group structure. Also by multiplying x on the sides of relationship

x−1hx = h, we will have hx = xh, for each x ∈ G and h ∈ H . Hence H ⊆ Z(G).

Definition 5.8. Let G be a topological MI-group and let U be a neighborhood of e. U is said

to be PG−invariant, if UPG = U .

For example, for each neighborhood U of e, W = UPG is obviously PG−invariant. In fact,

WPG = UPGPG = UP 2
G ⊆ UPG =W .

Now we present another form of theorem 5.6 with a different hypothesis based on the new

definition.

Theorem 5.9. Let G be a topological MI-group and H a MI-subgroup of G such that H
G
= H.

If there is a neighborhood PG−invariant U of e such that U ∩ H is topologically closed in G

then H is also topologically closed.

Proof. Let U be a neighborhood PG−invariant of e and V be a neighborhood of e such that

V 2 ⊆ U . Suppose that x ∈ H and xα, α ∈ D, be a net in H such that xα → x. Since x−1 ∈ H,

there is y ∈ V x−1 ∩H. According to the definition, there is a α0 ∈ D such that xα ∈ xV for

each α ≽ α0. That way for every α ≽ α0, we will have

yxα ∈ (V x−1)(xV ) = xx−1V 2 ⊆ PGU = U.

Therefore yxα ∈ U ∩ H. Since yxα → yx and U ∩ H is closed, we have yx ∈ U ∩ H, i.e.

yx ∈ H. Now since y−1yx ∈ y−1H ⊆ H, for y−1y ∈ PG we have x ∈ H
G

= H, which this

complete the proof.

Theorem 5.10. Let G be a topological MI-group, let U be any neighborhood PG−invariant of
e and F be a compact subset of G. Then there is an open subset V of G such that xV x−1 ⊆ U

for each x ∈ F .

Proof. Let W be a symmetric neighborhood of e such that W 3 ⊆ U . We can assume that W

is PG − invariant, otherwise we can replace it with WPG. Since the family {Wx}x∈F is an

open cover of compact subset F of G, there are x1, x2, ..., xk ∈ F such that F ⊆
k
∪
i=1
Wxi. Let

V =
k
∩
i=1
x−1
i Wxi. Clearly V is an open subset of G by (1) and for each i = 1, 2, ..., k since

V ⊆ x−1
i Wxi, we have

xiV x
−1
i ⊆ xix

−1
i Wxix

−1
i = (xix

−1
i )2W ⊆ PGW =W.
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Finally, for every x ∈ F we have x = wxi for some xi ∈ F and so

xV x−1 = wxiV x
−1
i w−1 ⊆ wWw−1 ⊆W 3 ⊆ U.

It is necessary to remember that an anti-involution θ : G → G is an automorphism on G

such that θ2 = I and θ(xy) = θ(y)θ(x). We end this section with a different result on this

concept.

Theorem 5.11. Let G be an MI-group such that {e} is closed in G, i.e. {e}G = {e}. If there

is an anti-involution θ : G→ G such that θ(x) ∈ PGx
−1 for each x ∈ G, Then θ(x) = x−1.

Proof. By assumption for each x ∈ G, there is s ∈ PG such that θ(x) = sx−1 and hence

x = θ(θ(x)) = θ(x−1)θ(s) = (θ(x))−1θ(s) = (sx−1)−1θ(s) = xs−1θ(s).

By left cancellation law in MI-group G we will have s−1θ(s) = e and so θ(s) ∈ {e}G = {e}, as
s−1 ∈ PG. Therefore θ(s) = e or s = θ2(s) = θ(e) = e, i.e. θ(x) = x−1.

Corollary 5.12. By the previous theorem, inversion −1 is only anti-involution on every

MI-group G with the above property.

6. Existence of nonnegative invariant measures on locally compact MI-groups

Suppose that G be a locally compact Abelian topological MI-group. We consider G as

a commutative topological semigroup with identity e. A locally compact abelian semigroup

G is embeddable in a locally compact group G′, if there exists a bicontinuous semigroup

monomorphism φ mapping G into G′, i.e. if φ yields a homeomorphism between G and

φ(G). The following proposition shows that under what conditions a locally compact Abelian

semigroup is embeddable as an open subsemigroup of a locally compact Abelian group.

Proposition 6.1. [17] Let S be a locally compact abelian semigroup. The following conditions

on S are eqivalent:

i) S is a cancellation semigroup and satisfying (1).

ii) S is embeddable as an open subsemigroup of a locally compact group G.

Since each locally compact abelian topological MI-group G is a commutative topological

semigroup with identity e and satisfying cancellation laws, by this proposition, G is embeddable

as an open subsemigroup of a locally compact abelian group G′ if and only if the translations

x → xy are open maps for every y ∈ G. Finally, by the following theorem the restriction of

the Haar measure of G′ to G is a invariant nonnegative regular measure on G.
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Theorem 6.2. [17] Let S be a locally compact abelian semigroup and µ a nonnegative regular

measure on S. Suppose that that S and µ satisfy the following condition.

(*) For each open set U , xU is open for each x ∈ S and µ(xU) = µ(U) > 0.

Then S is embeddable as an open subsemigroup in a locally compact abelian group G and µ

is the restriction of the Haar measure of G to S. Conversely if S is an open subsemigroup of

a locally compact abelian group G and if µ is the restriction of the Haar measure of G to S,

then S is a locally compact abelian semigroup and S and µ satisfy condition (∗).

Definition 6.3. A semigroup G is said to be right reversible if Gx∩Gy ̸= ∅, for every x, y ∈ G.

Every MI-group G as a semigroup is right reversible. Indeed for each x, y ∈ G by the axiom

(3) of definition 1 and that yy−1 = y−1y, we will have x(y−1y) = (y−1y)x ∈ Gx. On the other

hand, x(y−1y) = (xy−1)y ∈ Gy. Therefore x(y−1y) ∈ Gx∩Gy which implies that Gx∩Gy ̸= ∅.
Generally, there is a similar theorem on locally compact topological semigroups as follows:

Theorem 6.4. [15] A locally compact right reversible topological semigroup S having the trans-

lations open can support a right and left invariant measure if and only if G can be topologically

embedded as an open subspace in a locally compact topological group G and the invariant mea-

sure on S is the restriction of an unimodular Haar measure on the group G.

Since every topological MI-group as a topological semigroup is reversible and satisfying

cancellation laws, by the preceding theorems we have:

Theorem 6.5. Let G be a topological MI-group (abelian or nonabelian). Then G is embeddable

as an open subsemigroup in a locally compact group G′ if and only if G satisfy the condition (1).

Moreover the restriction of a unimodular Haar measure on the group G′ to G is an invariant

nonnegative regular measure on G.

In this way, by this embedding, the entire harmonic analysis can be moved to a topological

MI-group satisfying (1).

Example 6.6. Every MI-group under the internal topology is a locally compact space. In fact

for each x ∈ G, xPG is a compact neighborhood of x. Also by example 2.6, the translations on

G are open and by theorem 3.3, every MI-group G under the internal topology is Hausddorff if

and only if PG = {e} and so the internal topology is discrete topology . Therefore every locally

compact Hausdorff MI-group under the internal topology will have an invariant nonnegative

regular measure, which will obviously be the counting measure.

Theorem 6.7. Let G be a topological MI-group with property ⋆ and satisfying (1). Also let

µ be an invariant nonnegative regular measure on G. If PG be compact subset of G with

µ(PG) > 0 and PG
G
= PG then for every full noncompact MI-subgroup H of G which is closed

in G (H
G
= H), we have µ(H) = +∞.
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Proof. By assumption, PG ⊂ H and so there is x ∈ H −PG which implies that xPG ∩PG = ∅.
Since xPG ⊆ H, we have xPG ∪ PG ⊆ H and hence

2µ(PG) = µ(PG) + µ(xPG) ≤ µ(H).

Since PG ∪ xPG is compact , by theorem 3.10, subset PG ∪ xPG
G

is also compact and

PG ∪ xPG
G ⊂ H

G
= H. Hence there is y ∈ H − PG ∪ xPG

G
, otherwise H = PG ∪ xPG

G

will be compact. It is obvious that yPG ∩ PG = ∅ and yPG ∩ xPG = ∅, otherwise we should

have y ∈ PG or y ∈ xPG
G
. Hence the sets PG , xPG and yPG are pairwise disjoint and so

µ(H) ≥ µ(PG ∪ xPG ∪ yPG) = µ(PG) + µ(xPG) + µ(yPG) = 3µ(PG).

Continuing this method by induction for each n ∈ N, we get µ(H) ≥ nµ(PG) and so µ(H) =

+∞.

Corollary 6.8. According to the recent theorem, if µ(G) < ∞ then the topological MI-group

G does not have any full noncompact MI-subgroups H which is closed in G and so G will be a

compact topological MI-group.

7. Conclusion

In this paper, we continued our development of topological MI-group theory focusing on

separation axioms, the isomorphism theorems in topological MI-groups and the existence of

nonnegative invariant measures on locally compact MI-groups that are well known in group

theory. After a brief description of the basic concepts of the MI-groups and by introducing

a particular condition on open sets in the T0 MI-group G, we showed that the rest of the

separation axioms are also valid. Under this new condition, called ”the ⋆ property”, each

T0 MI-group is also Hausdorff and regular. In addition, we have proved the isomorphism

theorems for topological MI-groups. In fact, the line of proof, with appropriate changes, is

similar to the case of topological groups. Furthermore, some interesting results about the

closed MI-subgroups are presented. Finally, the existence of nonnegative invariant measures

on locally compact MI-groups is verified. In fact, we have shown that under what conditions

a topological MI-group possesses a nonnegative invariant measure. We will focus on other

aspects of topological MI-groups in our next research.
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