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ABSTRACT. A many identities group (MI-group, for short) is an algebraic structure which
is generalized a monoid with cancellation laws and is endowed with an invertible anti-
automorphism representing inversion. In other words, an MI-group is an algebraic structure
generalizing the group concept, except most of the elements have no inverse element. The con-
cept of a topological MI-group, as a preliminary study, in the paper ” Topological MI-group:
Initial study” was introduced by M. Holéapek and N. Skorupové, and we have given a more
comprehensive study of this concept in our two recent papers. This article is a continuation
of the effort to develop the theory of topological MI-groups and is focused on the study of
separation axioms and the isomorphism theorems for topological MI-groups. Moreover, some

conditions under which a MI-subgroup is closed will be investigated, and finally, the existence
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1. INTRODUCTION

A many identities group (MI-group, in short) is a special algebraic structure in which certain
elements (called pseudoidentities) behave like the identity element and having a monoidal
substructure. The concept of MI-group, in the paper ”"MI-algebras: A new framework for
arithmetics of (extensional) fuzzy number” has already been introduced. In this new algebraic
structure, the set of pseudoidentities play an essential role. These elements generalize the
role of the identity element, by which we can derive various properties of groups in a weaker
form. In the second section, we recall some basic definitions, examples, propositions and
theorems related to MI-groups and topological MI-groups. In the third section, under some
special conditions, the separation axioms in topological MI-groups are investigated. In the
fourth section the isomorphism theorems for topological MI-groups are expressed. The fifth
section present some results about closed MI-subgroups. The final two sections is devoted to
the existence of nonnegative invariant measures on the locally compact MI-groups and our

conclusions.

2. Preliminaries
An Ml-group is based on a generalization of the concept of monoid that satisfies the
cancellation laws and is endowed with an invertible anti-automorphism representing inversion.
Pseudoidentities elements play an important and undeniable role, i.e. elements that possess
similar properties to the identity element. The most important types of such elements are
the form zz~!, where € G. In this section, we first discuss the definitions and important

concepts of the MI-groups.

Definition 2.1. (Definition 2.1 [§]) A triplet (G,%, ~!,e) is said to be an MlI-group if it
satisfies the following axioms:
(1) (G,*) is a monoid,
(2) ~': G — G is an involutive anti-automorphism, i.e., Vx,y € G, it holds
() wxy)t =y,
(i) (@) ==,
(3) xx(yxy ') = (yxy~ ') xax for any z,y € G,
(4) the cancellation laws hold, i.e., Vz,y,z € G,

rxy=xxz =y =z (left cancellation law),

y*xx =z*xx =y =z (right cancellation law).

Typically, we write (G,*, ~!,e) = G and x xy = zy. Let Pg be the least submonoid of G
that contains the set {zz~! : 2 € G}. Elements of Pg are called pseudoidentity elements, e

is called an (strong) identity element and the involutive anti-automorphism ~! of G will be
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called the inversion of G. By Lemma 2.1 of [8], we have

1

1 -1
Po = {z12] "zozy ..xpz, | x1,22,...,x, € G,n € N},

Moreover, sz = xs for every x € G and s € Pg (Axiom (3) of definition) . Also by Lemmas
2.2 and 2.3 of [§], we get

i)zz ! =2"l2,Vz € G

ii) s = s~ Vs € Pg.

The recent feature shows that the elements Pg are symmetric. If Pg = {e}, then G has a
group structure. It should be noted that the above definition of an MI-group and Pg can be
based on the definition 2.1 from [f].

For MI-groups G and H, a mapping f : G — H is a homomorphism of MI-groups, provided
that

(1) fxxcy) = f(z)*xm f(y), Vo,y € G,

(2) f(ec) = en,

3) fz™hH = f(x) "t Vz €G.

Let H be a non- empty subset of G. The set H is said to be closed in G, if s € H implies
x € H whenever x € G and s € Pg. The set

HG:ﬂ{KQCHKisclosedinGanngK}

is called a closure of H in G. By theorem 3.1 of [2],

FG:{xEG\EISGPGza:SGH}.

Definition 2.2. (Definition 2.8 [6]) Let G = (G,*, ~!,e) be an Ml-group, and H C G . If
H = (H,*, ~',e) is itself an MI-group under the product and inversion of G, then H is said
to be an MI-subgroup of GG, which is denoted by H < G.

According to Theorem 2.4 of [§], H is an MI-subgroup of G if and only if e € H and
xy~! € H for each x,y € H. By theorem 2.3 of [6], Pg is an MI-subgroup of G. By Lemma
2.1 of [8], Pg is also an abelian MI-subgroup of G. An MI-subgroup H of an MI-group G that
contains Fg is said to be full and is denoted by H <; G. We say H is a non-full MI-subgroup,
if H is not a full MI-subgroup.

Example 2.3. Let G = {[a,b] | a,b € R,a < b} be the set of all closed real intervals. By

example 2.2 of [G], we know (G, +, —, [0, 0]) under algebraic actions

[a,b] + [¢c,d] = [a+ ¢,b+ d],
—[(L,b] = [_ba —(L],
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is an additive abelian MI-group. Obviously, Pg = {[—=z,z] | z > 0}.

Example 2.4. Let GT = {[a,b] | a,b € RT,a < b} be the set of all closed real intervals of
positive real numbers. As in Example P23, it is easy to see that G under algebraic actions .

and ~! defined as follows is an abelian multiplicative MI-group:
[a,bl.[c,d] = [a.c,b.d],

[a,b]7' = [1/b,1/a).

In this case we will write GT = (GT,., ~1,[1,1]), where [1, 1] is the identity element of G*.
Now, like the topological groups, we have the following definition:

Definition 2.5. Suppose that G is an MI-group, whose underlying space is a topological
space. Then G is called a topological MI-group if (z,y) — x xy maps G x G onto G and

1

x — 7" maps G on G continuously.

For example, every MI-group G = (G,*, ~! e) endowed with the discrete topology is a
topological MI-group.

Example 2.6. (Internal topology on MI-groups)(Definition 3.1 of [i])
Let G be an Ml-group, and U subset of G. We say that U is open in G, if WG =U° ie.

U¢ is closed in G from the MI-groups point of view, where U¢ is complement of U in G.

According to this definition, we get

Us={xeG|Tse PgaselUY},

or
U={zreG|VsePgascU}={xecG|xPs; CU}.

So according to this relationship, to prove the openness of a set is enough to show that
UC{z e G|xPg CU}. Obviously U is open if and only if UPg = U. It is clear that the
family of such subsets of G, including () and G, has the properties of a topology. This topology
is called the Internal topology on an MI-group.

It is obvious that Pg and every full MI-subgroup of G are open. The subset U of G is closed
if and only if U¢ = U, that is, the topological closure and the MI-group closure of U are the
same. Also every neighborhood of e contains Pg. By Propositions 3.2 and 3.3 of [I], each

MI-group G under this topology, becomes a topological MI-group satisfying

(1) U is open in G and x € G imply zU is open in G.
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Also by Remark 3.5 of [1], Pg is the smallest open subset of G which contains e. Therefore
for each ¢z € G, xPg is the smallest and simplest open subset of G containing x. In fact,
according to the definition of open sets in this topology, each open set of x, clearly including
xPg.

Throughout the text, we say U is closed in an MI-group G, if UG = U, while we say U is
topologically closed in G, if U = U.

3. SEPARATION AXIOMS IN TOPOLOGICAL MI-GROUPS

In the theory of topological groups, it is known that each topological group satisfying the Tj
separation axiom is also Hausdorff and hence regular. But in topological MI-groups, this is not
necessarily true. Indeed, as will be seen , the topological MI-group G = {[a,b] | a,b € R,a < b}
of real intervals under the internal topology is a Ty space, but is not a Hausdorff space. Before

that, we first recall the separation principles in topological spaces.

Definition 3.1. Let X be a topological space.

i) X is said to be Ty space if it satisfies the Ty axiom, i.e. for each z,y € X such that z # y
there is an open set U C X so that U contains one of « and y but not the other.

ii) A space X is a T space or Frechet space if it satisfies the 77 axiom, i.e. for each z,y € X
such that x # y, there are two open subset U and V sothat x e U ,y¢ Uandy eV ,x ¢ V.

iii) A space X is a Ty space or Hausdorff space if it satisfies the T axiom, i.e. for each
x,y € X such that z # y there are two disjoint open subsets U and V of X so that x € U and
yeV.

iv) A space X is regular if for each x € X and each closed C' C X such that = ¢ C, there
are two disjoint open sets U,V C X so that x € U and C C V . A regular T} space is called a
T35 space.

v) A space X is normal if for each pair A and B of disjoint closed subsets of X, there is a
pair U and V of disjoint open subsets of X so that A C U, B C V . A normal T} space is

called a Ty space.

If a topological MI-group is a Ty space, we say that it is a Ty MI-group. We begin this

section by stating and proving the above claim.

Proposition 3.2. Let G be the topological MI-group G = {[a,b] | a,b € R,a < b} of real
intervals under the internal topology. Then G is a Ty MI-group, but it is not a Hausdorff
topological MI-group.

Proof. By example P23, Pg = {[—x,z| | © > 0}. Therefore, according to the last paragraph of

the previous section, for each [a,b] € G,

[a,b] + Pg ={[a —z,b+x] | x > 0}
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is the smallest and simplest open subset of G containing [a, b]. So just enough, consider such

open subsets of G. For every [a, b], [¢,d] € G such that [a,b] # [c,d], we have

l[a,b] + PaNe,d|+ Po#0 <= Fz,y >0,[a—z,b+2z] =[c—y,d+y]
<~ a+b=c+d.

i.e. two intervals [a,b] and [c, d] have the same center. Therefore, non-centered intervals are
separated by open subsets [a,b] + Pg and [c,d] + Pg of G . But for intervals [a,b] and [c, d]
with the same center, one is inside the other. For example, if the interval [a,b] is within the

interval [c,d], then for x = a — ¢ > 0 we have ¢ = a — x and d = b+ x. Therefore
[Cv d] = [(Z,b] + [—.’IJ,CU] = [G, b] + P,

while [a,b] ¢ [c,d] + Pg. Indeed, there is no real non-negative number z, as [a,b] = [c,d] +
[—z, x]. Therefore [c,d] has an open neighborhood that does not contain [a, b]. However, only
one of these has an open neighborhood that does not contain another. Thus G is a Ty MI-
group. On the other hand, every open neighborhood of [a,b], obviously includes [a,b] + Pg

and so it includes [c, d]. Therefore, the internal topology on G is not Hausdorff.

In general, for the internal topology on MI-groups, we have the following important fact:

Theorem 3.3. Every Ty topological MI-group under the internal topology is a Hausdorff space
if and only if Pg = {e}.

Proof. By Remark 3.5 of [], every neighborhood of e contains Pg. Therefore, identity element
e can not be separated from any member of Py unless Py = {e}, i.e. the MI-group G has a

group structure.

Remark 3.4. By previous theorem, every topological MI-group G under the internal topology
is Hausdorff if and only if it has a group structure. In other words, the existence of a topological
property, like Hausdorff, has altered its algebraic structure. It should be noted that in this
case each subset of G is open, so the internal topology changes to a discrete topology on G.
Indeed, for each subset U of G, we have clearly U = {x | z{e} C U}.

From now on, we focus on topological MI-groups satisfying (1), i.e. if % be an open basis
at e, then the families {zU} and {Ux}, where x runs through all elements of G and U runs
through all elements of %, are open bases for GG in each x € GG. Therefore for each open subset
U of G and every z € U, there is a neighborhood V of e such that zV C U.

In view of the above discussion, it seems that an additional condition is necessary for a Tj
topological MI-group to be Hausdorff. Accordingly, we define the following condition on a

topological MI-group and examine the separation axioms.
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Definition 3.5. A topological MI-Group G is said to have the property *, if for every open
subset U of G and x € U, there is a neighborhood V of x in G such that Ve cvU.

Based on this property, we will have the following important theorem in relation to the

principles of separation in topological MI-groups under the desired topology.

Theorem 3.6. Let G be a Ty topological MI-group with property x. Then G is Hausdorff and

reqular space.

Proof. Since G is a Tj space, for every x,y € G such that x # y there is an open set U C G so
that U contains one of x and y but not the other. For example if € U and y ¢ U, then by
property *, there is a neighborhood V of x such that v C U. Also there are neighborhoods
W and Vj of e such that V =W and VO2 C W. This implies that Vj and yVO_l are disjoint
neighborhoods of x and y, Respectively. Indeed if z € zVy N yVO_I, then z = zvy = yvl_l for

some vg,v; € Vy. Hence, we obtain
yvl_lvl = xVUgU| € alcVO2 CaxW =V.

Since viv] L' ¢ Pa, we find that Yy € VG, which implies that y € U, that this is a contradiction.
Therefore G is Hausdorff. In relation to regularity, let U be a neighborhood of e in G. Hence
there are neighborhoods V' and W of e such that VG C U and W2 C V. We can also assume
that W is symmetric, i.e. W = W~ Then if z € W, we have 2W N W # (). Therefore
w1 = weo for some wy,we € W, and so xwlwfl = wgwfl e WW-1 = W?2 C V. Since
wlwfl € Pg, we find that = € VG C U, and so W C U, i.e. G satisfies the axiom of regularity
at e. For other points of G, let U be a neighborhood of an arbitrary member x € G. By
assumption, there is a neighborhood V' of x such that VG C U. Also there are neighborhoods
W and Vj of e such that V' = W and VO2 C W, Where Vj can be selected symmetrically. Now
if y € 2V, then yVy N aVy # 0 and thus yv, = xvs for some vy, vy € Vy. Hence, we will have

yvlvl_l = 331}22)1_1 € JUVOVO_l = :EVO2 CaW =V.

Since vlvfl € Pg, we find that y € VG C U and so xVp C U, where 2V} is a neighborhood of

x. Therefore G satisfies the axiom of regularity at every point.

The following Lemma plays an important role in the study of topological MI-groups.

Lemma 3.7. ([0], Proposition 3.6) Let G be a topological MI-group, and U be a open subset
of it. Then TC is also open.

Proof. Let x € UG. Then there is s € Pg such that xs € U. Since U is open, there exist a
neighborhood V of e such that sV C U and so Vs C U. Hence zV C UG. Therefore z is

. . =G
an interior of U .
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Theorem 3.8. Let G be a topological MI-group with the property x and let % = {Uqy}acr be

. —G . .
an open basis at e. Then %' = {Uy  }acr is also an open basis at e.

Proof. By previous Lemma, for every a € I, Uiaa is also an open subset of G. By assumption,
for each neighborhood U of e, there is a neighborhood V' of e such that v CU. Since % is
an open basis at e, there exists U, € % such that U, C V and so UicYG - VG C U. Thus the

proof is completed.

Remark 3.9. Based on the previous theorem, for the topological MI-groups with property *,
we can consider the bases at e in which each member of the basis is closed in MI-group, i.e.
—G

Uy, =VU,.

Theorem 3.10. Let G be a topological MI-group with property x. Then for each subset K of
G, KC is compact if and only if K is compact.

Proof. Let {Uq}aer be an open cover of KC. Then K¢ - aLéIUa and so for every = € K°
there is o, € I such that z € U,,. By assumption there is a neighborhood V,, of = such
that @G C U,,. Therefore, it is clear that {V,, }a,cr is also an open cover of K and so
K. Since K is compact, we may take a finite number of subsets Vi, Va,, ..., Va, such that

n —G .
K C AUIVai- So for each x € K there is s € P such that s € K and hence zs € V,,, for some
1=
-G . —+G G .
o;. Therefore x € V,,, . Since V,,,  C U,,, we have z € U,, and so K C ,Uani. Therefore
1=

every open cover of K has a finite subcover, i.e. K is compact. On the contrary, suppose
that KC is compact and {Uy, }acr be an open cover of K. As before, we can choose an open

cover {V, }aer of K such that for each « € I, VQG C U,. Then we will have

where recent inclusion is simply proven. Since by Lemma B72, for every « € I, 7&0 is also an

open subset of GG, family {VQG}%[ is an open cover of FG. Hence there are aq, ao, ..., an € 1
—_ N —— N — n

such that K “ - .UIVaiG and so we have K C ‘UIV%.G - .UIU%. , which implies that K is
1= 1= 1=

compact. [

Remark 3.11. If the internal topology has x property, then Pg is closed. Indeed Py is an
open subset of G that contains e and so there is a neighborhood V of e such that v C FPg.
Therefore PigGY - VG C Pg, ie. P7GG = Pn. Hence Pg is an open and closed subset of G. If
G # Pg, obviously G is unconnected under the internal topology. With the same argument,

it is easy to see that for each x € G, xPg is also closed.
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Theorem 3.12. Let G be a topological MI-group with property x. Then every open MI-
subgroup H of G is closed. Also it is closed in MI-group G.

Proof. Let x € HE. Thus there is s € Pg such that xs € H. Since H is open, by assumption
there exists a neighborhood V' of xs such that v C H. But zs € V implies that x € v
and so x € H. Therefore " = H , i.e. H is closed in MI-group. On the other hand, for
each x € G, xH is open and so by Lemma BT, xTH'G is also open. Hence by relationship

H =( U :riHG)C, HC and so H is closed. 0
zHC+HC

We finish this section by expressing a new separation principle for topological MI-groups.

Definition 3.13. A topological MI-group G is said to be T} space, if for every =,y € G such
that « # y there is an open subset U which is closed in G( i.e. U =U ) so that U contains

one of z and y but not the other.

If a topological MI-group is a T space, we say that it is a 7 MI-group. Apparently, a 7§
MI-group is also Ty MI-group. It’s easy to see that every Ty MI-group with x-property is also
a Ty Ml-group. The importance of this separation principle is that under it, the topological
MI-group G will be Hausdorft:

Theorem 3.14. Let G be a Ty MI-group. Then G is also Hausdorff.

Proof. Since G is a T} space, for each x,y € G such that x # y there is an open subset U of G
which is closed in G so that U contains one of x and y but not the other. For example, suppose
that z € U and y ¢ U. Also there are neighborhoods V and W of e such that U = Vz and
W?2 C V. This implies that Wz and W !y are disjoint neighborhoods of = and ¥, respectively.

In fact if z € Wz N W™ ly, then z = wiz = w;ly for some w1, ws € W. Hence we obtain
wgwgly = wowqz € W2z C V= U.

Since wawsy L' e Pg, we find that y € UG = U, that this is a contradiction. Therefore G is
Hausdorft.

Anyway, we’ll have
(To, * property) = T, = Tp

But it seems that the principle of regularity can not be derived from this principle. However,
this seems to be the weakest principle of separation that can be placed on any topological
MI-group so that it is still Hausdorff. It is interesting to note that in the internal topology,

the above principle is equivalent to Hausdorff.
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4. THE ISOMORPHISM THEOREMS IN TOPOLOGICAL MI-GROUPS

In this section we discuss about the isomorphism theorems in topological MI-groups.

Theorem 4.1. Let G and G be topological MI-groups with identities e and €, respectively, such

that Pg is closed in MI-group é, i.e FéG = Pg. Let f be an open, continuous homomorphism

~ &~

of G onto G. Then H = kerf is a normal MI-subgroup of G and the sets ffl(:):Pé ), T €G,
. ‘ . —G ~

are exactly the distinct closure of cosets of H in G, so that the mapping T — ffl(acPé ) = ®(2)
is an open, continuous homomorphism 0fC~7Y onto the MI-group G /H with the quotient topology

and Ker ® = Pg. Also ® induces an homeomorphism and isomorphism of é/Pé onto G/H.

Proof. By theorem 4.14 of [6], ker f <G and so G/H is a quotient MI-group. At first for every
v,y € ffl(@G), we show that yTH'G = ﬁG. Since f(y), f(y) € TPéG, there are s',t' € Pg
such that f(y)s’, f(y')t' € TP and hence there are s, € Px such that f(y)s’ = Zs; and
f(y"t' = Tt;. But f is surjective and so is strong, i.e. there are s,t € P such that s’ = f(s)
and t' = f(t), so that f(ys) = Zs1 and f(y't) = Tt;. Accordingly, we will see

Flyy' " 'st™h) = flyst™y ™ = Flys(y't) ™) = Flys) fy't)

=51(Ft) " =Tsit] 7 =37 st € Pa

Therefore yy' *st™' € Kerf = H. Since st™! € Pg, yy' ' e HE and so yT'—IG = ﬁG. On the
other hand, for y € f _1(%65 fixed , according to this relation for every ' € f _1(@(;), we
have ¢’ € y?G. Hence f _1(ﬁé) C y?G. Conversely, for each u € ﬁa, there is s € Pg such
that us € yH and so us = yh, for a member h € H. Since f(h), f(s) € Pz and f(y) € %é,

we obtain

= —a
fu)f(s)=fy)f(h) C2P5 Py CzPs .
Therefore~f(u) € EPéG, and consequently u € f‘l(EP@G), ie. yTiTG - f‘l(EP@G). Thus
f‘l(EPéG) = yiHG and this is independent of the selection of each member of f‘l(EPéG).
Let U be an open subset of G. We will show that ®(U) is open in G/H. It is sufficient to
show that, ¢~ 1(®(U)) is open in G. But we notice that

OO = R FeT) = U ERE) — R,

where the recent equality is simply obtained from the relation f~1(UA,) = Uf~1(4,). Accord-
u u

~ ~ = G = G
ingly, since U P is open in G, hence U P is also open and so by continuity of f, f LU P )

is open in G. Therefore ® is an open mapping. Let {WG :u € U} be an open subset of G/H,

where U is open in G. Hence we have

O WuH  ueU}={F:Juelst f(FP ) =ul }.



Alg. Struc. Appl. Vol. 7 No. 2 (2020) 115-134. 125

But the recent set is equal to WG. Since UPg is open in G and f is an open mapping,
the set f(UPg) is open in G and so by lemma B2, WG is open.~Ab0ut the last equality,
for every z such that ffl(@G) = wH we see that u € ffl(@G) and so f(u) € TPéG.
Therefore there are s,¢ € Pz such that f (u)s = xt. Since f is epimorphism, hence is strong

and as a result there is s; € Pg such that s = f(s1) and

ot = f(u)s = f(u)f(s1) = f(us1) € f(UPg),

ie. T € f(UPg)G. Conversely if T € f(UPg)G, then there is s € Py such that zs € f(UFg).
Therefore there are u € U and t € Pg such that ¥s = f(ut). Since f(t) € Pg, we can see

Fu)f(t) = flut) = Fs € iP5 —> f(u) € TP -

Hence u € f‘l(@é), ie. f‘l(féiPéé) = wH. Thus @ is continuous. Also ® is surjective.
In fact for every o’ € G/H, it is sufficient that = = f(a). Then f(a) =7 € %é and so
a € f_l(ﬁé), ie. all” = f‘l(@é) = ®(7). Now we will show that ¢ is a homomorphism.
For each 7,y € G, We have to show that ®(zy) = ¢(Z) x ®(y) or

FVEPSC) = NGRS « £ GRE).

Let z € ffl(@é) and y € ffl(ﬁé). Then ffl(@é) = 2H" and y?c = ffl(ﬁé).
Also we have f(z) € @G and f(y) € EG and so there are t',s" € Pz such that f(z)t’ € TPg
and f(y)s' € yPg. Therefore there are t*,s* € Pg such that f(x)t' = t* and f(y)s' = ys*.
As a result

flay)t's' = f(x)f(y)t's' = Tyt*s* € TYPg.

. T@ Té —
Since t's’" € Pg, we conclude that f(zy) € xyPg or zy € f_l(xyPé ). Hence :UyHG =

f _1(§§P5G). Finally since H is normal MI-subgroup of GG, we can see that
_1,~50G 1, ~=5G, —5G —fJG ——G _1,~50G
f l(xPé )x f 1(yP@ y=azH xyH =xzyH =f 1(xyPé ).
Therefore @ is an open, continuous homomorphism of G onto the MI-group G/H with the

quotient topology.
Also by lemma 4.11 of [6], Pg g = {FG} and so we will have

Ker &= {3: f'@P:0) = A,

By theorem 2.5 of [6], Pz C Ker ®. Conversely if 7 € Ker ®, then ffl(ffPéG) = T Since

e € FG, we have f(e) = ¢ € EP@G and so EPéG = 7P

Oor T € ?@G = Pé. Therefore

Ker ® = Pz. Accordingly, since for every z € Ppg,

o) = [ @P0) = A,
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hence @ restricted to Pg is constant and so by theorem 2.7 of [2], ® is not monomorphism.
But by theorem 5.1 of [2], G /Pz = G/H. Finally, applying ® instead of f in the first part,
it is easy to see that there is an open, continuous homomorphism @' of G/H onto G / Pz and
Kerd' = Pg/p = {FG} Hence @' is injective and so is isomorphism. Also since @’ is open,

@'~ ! is continuous and so @’ is a homeomorphism of G/H onto G/ Px . n

It is necessary to mention that a homomorphism f : G — H of MI-groups that satisfies
f(Pg) = Py, is called the strong homomorphism of MI-groups. According to the theorem 2.6
of [B], every epimorphism is strong.

The second isomorphism theorem for groups has a complete analogue for topological MI-

groups, as follows.

Theorem 4.2. Let G and G be topologz'tial MI-groups with identities e and €, respectively, such
that Pg is closed in MI-group é, i.e P750 = Pg. Let f be an open, continuous homomorphism
of G onto G. Let H be any normal full MI-subgroup of G, H = f_l(ﬁl), and H = Ker(f).
Then H <« G, H' <« H, and the MI-groups G/H, G/H, and (G/H")/(H/H') are topologically

isomorphic.

—G
Proof. We first show that H is a normal MI-subgroup of G. Let y € zHx~! . Then there are
s € Py and h € H such that ys = zhz~!. Since H is normal in CNJ, we will have

Fls) = F@)f () ()™ € f@) ) € fa)if@) i

Therefore there is ¢ € Pz such that f(ys)t € H. Since f is strong, t = f(t) for some t € Pg.
Hence f(yst) € H and so yst € H, i.e. y € FG, as st € Pg. Therefore cHr 1 - HE and
so by Theorem 4.2 of [6], H is a normal MI-subgroup of G. Also for each x € H', we have
f(z) € Pz C H soxeH,ie  H <H <s G. Since by theorem 4.14 of [6], H' <G, by theorem
4.6 of [6], H' < H. Also it is easy to see H/H' <G/H'.

Now let ¢ be the natural mapping of G onto G / H. It is known that 1) is an open, continuous
homomorphism and hence 1 o f is an open, continuous homomorphism of G onto G / H with

kernel ﬁG. Therefore by the previous theorem, G /FG is topologically isomorphic with G / H.

But in the other hand, by the lemma 4.1 of [6] for each z € G we have +HY =2HC. Hence
G /HG = G/H and so the MI-groups G/H and G/H are topologically isomorphic.

According to the previous theorem, the mapping f will induce an open and continuous
homomorphism ®(z) = f _1(@% of G onto the MI-group G/H’ with the quotient topology
and @~ Y(H/H') = H. Using the argument of the preceding paragraph, G / H is topologically
isomorphic to (G/H')/(H/H').
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5. SOME MORE RESULTS ABOUT MI-SUBGROUPS

In this section, we describe some other features of MI-subgroups of a topological MI-group.
Specifically, these results show that under what conditions a MI-subgroup will be closed.
To this end, first we will explain and prove the following important result which shows the
connection between the algebraic and topological closures.

Proposition 5.1. Suppose G is a topological MI-group satisfying (1) and U be a subset of G.

Then ﬁG C (UG).

Proof. Suppose that x € (U) . Then zs € U for some s € Pg. Therefore, for each neighbor-
hood xsV of xs we have xsV NU # (), where V is a neighborhood of e in G. Hence zsv = u
for some uw € U and v € V. Then zvs = u € U and so zv € UG, ie. 2V NT° # (). Therefore

WS (UG) 0

Under the condition x, it is easy to see the converse of the previous proposition is also valid:

Proposition 5.2. Let U be a subset of a topological MI-group G with property = . Then

@) c @

Proof. Let = € (UG). Then for every neighborhood V' of e, we have zV N u° # () and so
zvs € U for some s € P and v € V. By property *, there is a neighborhood W of zvs such
that W C U. On the other hand, since zvs € W we have zv € W and so zv € U. Therefore

J— TG
zVNU#0,ie. z€Uandsoze (U) .

Corollary 5.3. Let G be a topological MI-group with property x. Then for each subset U of G

G —
by the above propositions, we have (U) = (UG). Therefore, for every subset U of G such that
" = U, we have (U) C U and so we will have (U) = U, i.e. U is also closed in MI-group

G. Similarly, if U is topologically closed then UG is also topologically closed.

Theorem 5.4. Let G be a topological MI-group and H a MI-subgroup of G such that H = H
and UNH = UNH, for some neighborhood U of e in G and UNH # (). Then H is topologically

closed in G.

Proof. Since H is closed in MI-group G, by the previous corollary H is also closed in G, i.e.
@G = H. Now suppose that x € H. If x € U then 2 € U N H and so by assumption
xeUNH,ie xe H. If x ¢ U then for neighborhood zU of x, we have 2U N H # (). Hence
xu = h, for some u € U and h € H. Therefore 2 'au = 2= 'h € H and so u € @ =H,ie.
uw € UNH. Hence by assumption v € U N H and so v € H. Since zuu~' = hu™! € H, we will

have z € H* = H. However = € H and hence H = H. 0
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Theorem 5.5. Let G be a topological MI-group and H o discrete MI-subgroup of G such that
HE = H. Then H is closed.

Proof. By assumption, since e is an isolated point of H, there is a neighborhood V' of e such
that VN H = {e}. f x € VN H, thenz € H and z € V. Let x4, @ € D, be a net in H
such that x, — x. Therefore there is a ag € D such that x, € V for each a = «ag. Hence
To € VNH = {e},ie. 7o =e. Thusz =candso VNH = {e},i.e. VNH =V NH.
Therefore, by theorem B4, H is closed.

Theorem 5.6. Let GG be a topological MI-group and H a MI-subgroup of G such that " = m.
If there is a neighborhood U of e including Pg such that U N H is topologically closed in G
then H is also topologically closed.

Proof. Let x € H. Hence zz~! € Py and so by assumption zz~! € U. Thus there exist a
neighborhood V of e such that zz~!V C U. Let W be a symmetric neighborhood of e in G
such that W2 C V. Suppose that 2, a € D, be a net in H such that z, — 2. Since 27! € H,
there is y € Wa—' N H. Also there is a ag € D such that x, € W for each a = ag. Therefore

for every a > ag, we have
yro € Wz ) (aW) =2z 'W? C 2z~ lV C U.

Therefore yz, € UNH. Since yzo — yx and U N H is closed, we have yxr € UNH, i.e. yr € H
. Finally, since y~'yx € y~'H C H, we will have x € H = H , which implies that H C H.
Therefore H is closed.

Theorem 5.7. Let G be a topological MI-group such that G = OLcle”, for every neighborhood
n—=

V of e. If there is a discrete normal MI-subgroup H of G that is closed in G, then Pg = {e}

and H C Z(G), where Z(G) is the center of G.

Proof. By hypothesis, for each h € H there is a neighborhood U of e such that hU N H = {h}.
According to the continuity of the mapping  — 2~ 'ha at e, there is a neighborhood V of e
such that V='hV C hU. Therefor = ha € hU for every x € V. On the other hand, since H is
normal, we have mG —H  =Hforeachz € V. Consequently, z~the € hU N H = {h},
i.e. x7'ha = h for every € V. Since G = °levn, this is valid for every = € G. Indeed, for
each z € G there are vy,vs,...,v0, € V suchnt_hat T = v1v9...0; and so after k steps, we will

have

—_—
h

r  hr = v,;l...vglvflhvlvg...vk = h.
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Therefore £~ ha = h, for each z € G and h € H. Especially, for h = e we have 27!

T =e,ie.
P = {e}. Hence G have a group structure. Also by multiplying z on the sides of relationship

2~ hx = h, we will have hx = xh, for each x € G and h € H . Hence H C Z(G).

Definition 5.8. Let G be a topological MI-group and let U be a neighborhood of e. U is said
to be Po—invariant, if UPg = U.

For example, for each neighborhood U of e, W = U Py is obviously Pg—invariant. In fact,
WP =UPgPs=UP2Z CUP;=W.
Now we present another form of theorem b8 with a different hypothesis based on the new

definition.

Theorem 5.9. Let G be a topological MI-group and H a MI-subgroup of G such that " =H.
If there is a neighborhood Pg—invariant U of e such that U N H is topologically closed in G
then H 1is also topologically closed.

Proof. Let U be a neighborhood Pg—invariant of e and V' be a neighborhood of e such that
V2 C U. Suppose that € H and z,, o € D, be a net in H such that z, — x. Since 2~ € H,
there is y € Va~' N H. According to the definition, there is a ag € D such that z, € zV for

each a > «p. That way for every a = «ag, we will have
yro € (Ve ) (V) =22 V2 C PoU = U.

Therefore yz, € U N H. Since yr, — yr and U N H is closed, we have yz € U N H, i.e.
yr € H. Now since y~lyz € y~'H C H, for y~'y € Pg we have z € "¢ = H, which this
complete the proof.

Theorem 5.10. Let G be a topological MI-group, let U be any neighborhood Pg —invariant of
e and F be a compact subset of G. Then there is an open subset V of G such that xVax=! C U
for each x € F.

Proof. Let W be a symmetric neighborhood of e such that W3 C U. We can assume that W
is Pg — invariant, otherwise we can replace it with W Pg. Since the family {Wz},cp is an

k
open cover of compact subset F' of GG, there are x1, o, ..., ), € F' such that I C 'U1 Wax;. Let
1=

k
V = ‘r_ﬁlzz:i_lWxi. Clearly V is an open subset of G by (1) and for each i = 1,2, ..., k since

V C xi_IWxi, we have

:L‘ﬂ/x;l C mileWxixfl = (mim;l)zW C PeW =W.
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Finally, for every x € F' we have x = wx; for some x; € F' and so

Vel = wxiin_lw_l CuWw ' CW?3CU.

It is necessary to remember that an anti-involution 6 : G — G is an automorphism on G
such that 62 = I and O(xy) = 0(y)f(x). We end this section with a different result on this

concept.

Theorem 5.11. Let G be an MI-group such that {e} is closed in G, i.e. @G = {e}. If there
is an anti-involution 0 : G — G such that 0(x) € Pgx~" for each x € G, Then §(x) = 1.

Proof. By assumption for each z € G, there is s € Pg such that §(z) = sz~ and hence
z=000(z)) =0z 1)0(s) = (0(2)) " 0(s) = (sz71)710(s) = 257 16(s).

By left cancellation law in MI-group G we will have s~10(s) = e and so 0(s) € {7}G = {e}, as
571 € Pg. Therefore §(s) = e or s = 6%(s) = f(e) = e, ie. O(z) =271

-1

Corollary 5.12. By the previous theorem, inversion 15 only anti-involution on every

MI-group G with the above property.

6. EXISTENCE OF NONNEGATIVE INVARIANT MEASURES ON LOCALLY COMPACT MI-GROUPS

Suppose that G be a locally compact Abelian topological MI-group. We consider G as
a commutative topological semigroup with identity e. A locally compact abelian semigroup
G is embeddable in a locally compact group G’, if there exists a bicontinuous semigroup
monomorphism ¢ mapping G into G’, i.e. if ¢ yields a homeomorphism between G and
©(G). The following proposition shows that under what conditions a locally compact Abelian

semigroup is embeddable as an open subsemigroup of a locally compact Abelian group.

Proposition 6.1. [I7] Let S be a locally compact abelian semigroup. The following conditions
on S are eqivalent:
i) S is a cancellation semigroup and satisfying (1).

i1) S is embeddable as an open subsemigroup of a locally compact group G.

Since each locally compact abelian topological MI-group G is a commutative topological
semigroup with identity e and satisfying cancellation laws, by this proposition, G is embeddable
as an open subsemigroup of a locally compact abelian group G’ if and only if the translations
x — xy are open maps for every y € G. Finally, by the following theorem the restriction of

the Haar measure of G’ to G is a invariant nonnegative regular measure on G.
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Theorem 6.2. [I7] Let S be a locally compact abelian semigroup and p a nonnegative reqular
measure on S. Suppose that that S and p satisfy the following condition.

(*) For each open set U, zU is open for each x € S and p(zU) = p(U) > 0.

Then S is embeddable as an open subsemigroup in a locally compact abelian group G and
is the restriction of the Haar measure of G to S. Conversely if S is an open subsemigroup of
a locally compact abelian group G and if p is the restriction of the Haar measure of G to S,

then S is a locally compact abelian semigroup and S and p satisfy condition (x).
Definition 6.3. A semigroup G is said to be right reversible if GxNGy # 0, for every z,y € G.

Every MI-group G as a semigroup is right reversible. Indeed for each z,y € G by the axiom
(3) of definition 1 and that yy~! = y~ 'y, we will have z(y~'y) = (y~'y)z € Gz. On the other
hand, z(y~1y) = (vy~1)y € Gy. Therefore x(y~'y) € GxNGy which implies that GzNGy # 0.

Generally, there is a similar theorem on locally compact topological semigroups as follows:

Theorem 6.4. [[5] A locally compact right reversible topological semigroup S having the trans-
lations open can support a right and left invariant measure if and only if G can be topologically
embedded as an open subspace in a locally compact topological group G and the invariant mea-

sure on S is the restriction of an unimodular Haar measure on the group G.

Since every topological MI-group as a topological semigroup is reversible and satisfying

cancellation laws, by the preceding theorems we have:

Theorem 6.5. Let G be a topological MI-group (abelian or nonabelian). Then G is embeddable
as an open subsemigroup in a locally compact group G’ if and only if G satisfy the condition (1).
Moreover the restriction of a unimodular Haar measure on the group G' to G is an invariant

nonnegative reqular measure on G.

In this way, by this embedding, the entire harmonic analysis can be moved to a topological

MI-group satisfying (1).

Example 6.6. Every MI-group under the internal topology is a locally compact space. In fact
for each z € G, xPg is a compact neighborhood of . Also by example E8, the translations on
G are open and by theorem B=3, every MI-group G under the internal topology is Hausddorff if
and only if P; = {e} and so the internal topology is discrete topology . Therefore every locally
compact Hausdorff MI-group under the internal topology will have an invariant nonnegative

regular measure, which will obviously be the counting measure.

Theorem 6.7. Let G be a topological MI-group with property * and satisfying (1). Also let
i be an invariant nonnegative regular measure on G. If Pg be compact subset of G with
w(Pg) >0 and Pigc = Pg then for every full noncompact MI-subgroup H of G which is closed
in G (FG = H ), we have u(H) = +00.
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Proof. By assumption, P; C H and so there is x € H — Pg which implies that Pz N Pg = (.
Since x P C H, we have xPg U P C H and hence

2p(Pa) = p(Pa) + m(aPa) < p(H).

Since Pg U xPg is compact , by theorem BT, subset mG is also compact and
mG - ﬁG = H. Hence there is y € H — mG, otherwise H = mG
will be compact. It is obvious that yPg N P = 0 and yPg N 2Pg = 0, otherwise we should
have y € Pg or y € EG. Hence the sets Pg , tPg and yPg are pairwise disjoint and so

p(H) = p(Pg UaPe UyPa) = w(Pe) + w(aPg) + plyPa) = 3u(Fg).

Continuing this method by induction for each n € N, we get p(H) > nu(Pg) and so u(H) =
—+00. 0

Corollary 6.8. According to the recent theorem, if u(G) < oo then the topological MI-group
G does not have any full noncompact MI-subgroups H which is closed in G and so G will be a
compact topological MI-group.

7. CONCLUSION

In this paper, we continued our development of topological MI-group theory focusing on
separation axioms, the isomorphism theorems in topological MI-groups and the existence of
nonnegative invariant measures on locally compact MI-groups that are well known in group
theory. After a brief description of the basic concepts of the MI-groups and by introducing
a particular condition on open sets in the Ty MI-group G, we showed that the rest of the
separation axioms are also valid. Under this new condition, called ”the * property”, each
Ty Ml-group is also Hausdorff and regular. In addition, we have proved the isomorphism
theorems for topological MI-groups. In fact, the line of proof, with appropriate changes, is
similar to the case of topological groups. Furthermore, some interesting results about the
closed MI-subgroups are presented. Finally, the existence of nonnegative invariant measures
on locally compact MI-groups is verified. In fact, we have shown that under what conditions
a topological MI-group possesses a nonnegative invariant measure. We will focus on other

aspects of topological MI-groups in our next research.
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