

Journal of Algebraic Structures and Their Applications

ISSN: 2382-9761

www.as.yazd.ac.ir

Algebraic Structures and Their Applications Vol. 7 No. 2 (2020) pp 93-113.

Research Paper

FREE IDEALS AND REAL IDEALS OF THE RING OF FRAME MAPS FROM $\mathcal{P}(\mathbb{R})$ TO A FRAME

ALI AKBAR ESTAJI* AND AHMAD MAHMOUDI DARGHADAM

ABSTRACT. Let $\mathcal{F}_{\mathcal{P}}(L)$ ($\mathcal{F}_{\mathcal{P}}^*(L)$) be the f-rings of all (bounded) frame maps from $\mathcal{P}(\mathbb{R})$ to a frame L. $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ is the family of all $f \in \mathcal{F}_{\mathcal{P}}(L)$ such that $\uparrow f(-\frac{1}{n}, \frac{1}{n})$ is compact for any $n \in \mathbb{N}$ and the subring $\mathcal{F}_{\mathcal{P}_{K}}(L)$ is the family of all $f \in \mathcal{F}_{\mathcal{P}}(L)$ such that $\operatorname{coz}(f)$ is compact. We introduce and study the concept of real ideals in $\mathcal{F}_{\mathcal{P}}(L)$ and $\mathcal{F}_{\mathcal{P}}^*(L)$. We show that every maximal ideal of $\mathcal{F}_{\mathcal{P}}^*(L)$ is real, and also we study the relation between the conditions "L is compact" and "every maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ is real". We prove that for every nonzero real Riesz map $\varphi \colon \mathcal{F}_{\mathcal{P}}(L) \to \mathbb{R}$, there is an element p in ΣL such that $\varphi = \widetilde{p_{\text{coz}}}$ if L is a zero-dimensional frame for which B(L) is a sub- σ -frame of L and every maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ is real. We show that $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ is equal to the intersection of all free maximal ideals of $\mathcal{F}_{\mathcal{P}}(L)$ if B(L) is a sub- σ -frame of a zero-dimensional frame L and also, $\mathcal{F}_{\mathcal{P}_{K}}(L)$ is equal to the intersection of all free ideals $\mathcal{F}_{\mathcal{P}}(L)$ (resp., $\mathcal{F}_{\mathcal{P}}^*(L)$) if L is a zero-dimensional frame. Also, we study free ideals and fixed ideals of $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ and $\mathcal{F}_{\mathcal{P}_{K}}(L)$.

DOI:10.29252/as.2020.1798

 ${\rm MSC}(2010){\rm :}\ 06{\rm D}20,\,06{\rm D}22,\,54{\rm C}30$

Keywords: Lattice-ordered ring, Zero-dimensional frame, $F_{\mathcal{P}}$ -realcompact, Real Riesz map, Free ideal, Real ideal.

Received: 23 March 2020, Accepted: 23 May 2020.

*Corresponding author

1. Introduction

We state from the start that, throughout, by the term ring we mean a commutative ring with identity and a subring of a commutative ring with identity does not imply the identity must belong to the subring.

The ring of all real-valued continuous functions on a frame L is denoted by $\mathcal{R}L$ (see [6] for details). In [20] the authors introduced $\mathcal{F}_{\mathcal{P}}(L) := Frm(\mathcal{P}(\mathbb{R}), L)$ and showed that $R^X \cong \mathcal{F}_{\mathcal{P}}(\mathcal{P}(X))$. Also they proved that $\mathcal{F}_{\mathcal{P}}(L)$ is isomorphic to a sub-f-ring of $\mathcal{R}L$ and showed that the inclusion may be strict.

Let $C(X, \mathbb{R}_d)$ denote the set of continuous functions from a space X into the discrete space of real-numbers \mathbb{R}_d . It is known that $C(X, \mathbb{R}_d) \leq C(X)$. If X is discrete, then

$$C(X, \mathbb{R}_d) = C(X) = \mathbb{R}^X \cong \mathcal{F}_{\mathcal{P}}(\mathcal{P}(X)).$$

In this manner, $\mathcal{F}_{\mathcal{P}}(L)$ is the generalization of the f-ring $C(X, \mathbb{R}_d)$.

In [7] an element $\alpha \in \mathcal{R}L$ is called *locally constant* if there exists a partition P of L, meaning P is a cover of L and its elements are pairwise disjoint, such that $\alpha|a$ is constant for each $a \in P$, where $\alpha|a:\mathcal{L}(\mathbb{R}) \to \downarrow a$ given by $\alpha|a(v) = \alpha(v) \land a$ for every $v \in \mathcal{L}(\mathbb{R})$. The set of all locally constant elements of $\mathcal{R}L$ is denoted by $\mathfrak{S}L$. In [7], Banaschewski showed that $\mathcal{F}_{\mathcal{P}}(L) \cong \mathfrak{S}L$ as f-rings.

For any completely regular Hausdorff space X, $C_{\infty}(X)$, the subring of all functions C(X) which vanish at infinity, was introduced by Kohls in [22] (also, see [2, 5, 4, 3]). Also, $\mathcal{R}_{\infty}L$, the ring of real continuous functions vanishing at infinity on a frame L, was first discussed by Dube [10] (also, see [1, 15, 17]).

In this paper, we introduce the subring $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ which is the family of all $f \in \mathcal{F}_{\mathcal{P}}(L)$ such that $\uparrow f(-\frac{1}{n}, \frac{1}{n})$ is compact for any $n \in \mathbb{N}$ and the subring $\mathcal{F}_{\mathcal{P}_{K}}(L)$ which is the family of all $f \in \mathcal{F}_{\mathcal{P}}(L)$ such that $\cos(f)$ is compact. In Section 3, we show that every ideal of $\mathcal{F}_{\mathcal{P}}(L)$ is an absolutely convex z-ideal and $\frac{\mathcal{F}_{\mathcal{P}}(L)}{I}$ is totally ordered ring if and only if I is a prime ideal of $\mathcal{F}_{\mathcal{P}}(L)$. In Section 4, we introduced real ideals in $\mathcal{F}_{\mathcal{P}}(L)$ (resp., $\mathcal{F}_{\mathcal{P}}^*(L)$) and we show that a maximal ideal P of $\mathcal{F}_{\mathcal{P}}(L)$ (resp., $\mathcal{F}_{\mathcal{P}}^*(L)$) is real if and only if $\frac{\mathcal{F}_{\mathcal{P}}(L)}{P}$ (resp., $\frac{\mathcal{F}_{\mathcal{P}}^*(L)}{P}$) is archimedean (see Proposition 4.2). Proposition 4.10 contains a complete description of the residue class fields of $\mathcal{F}_{\mathcal{P}}^*(L)$ and also, shows a relation between the conditions "L is compact" and "every maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ is real". In Proposition 4.13, we give a characterization of compact frames in terms of fixed ideals of $\mathcal{F}_{\mathcal{P}}(L)$. In Proposition 4.14, we give a characterization of real maximal ideals of $\mathcal{F}_{\mathcal{P}}(L)$ (resp., $\mathcal{F}_{\mathcal{P}}^*(L)$) in terms of the countable meet property. In Section 5, we show that for every zero-dimensional frame L, $\mathcal{F}_{\mathcal{P}_{\mathcal{K}}}(L)$ is equal to the intersection of all free ideals of $\mathcal{F}_{\mathcal{P}}(L)$ (resp., $\mathcal{F}_{\mathcal{P}}^*(L)$) (see Proposition 5.2) and also every ideal of $\mathcal{F}_{\mathcal{P}_{\mathcal{K}}}(L)$ is fixed (see Corollary 5.8). Next we prove that if B(L) is

a sub- σ -frame of a zero-dimensional frame L, then $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ is equal to the intersection of all free maximal ideals of $\mathcal{F}_{\mathcal{P}}^*(L)$ and also every ideal of $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ is fixed (see Proposition 5.4 and Corollary 5.7). In Section 6, we study nonzero bounded Riesz maps on $\mathcal{F}_{\mathcal{P}}(L)$.

2. Preliminaries

We begin by briefly recounting the familiar notions involved here. For this, we recall some necessary definitions and results on frames, C(X), $\mathcal{F}_{\mathcal{P}}(L)$, real-trail and f-rings. Interested readers are referred to standard textbook on frames as [23], on f-rings such as [8], and on C(X) such as [16].

Throughout this paper, L will represent a frame. The *pseudocomplement* of an element a of L is denoted by a^* and an element a in L is said to be *complemented* if $a \vee a^* = \top$ and in this case $a' = a^*$. Set $B(L) := \{ a \in L : a \text{ is complemented } \}$, the sublattice of all complemented elements of L. We easily see that B(L) is a Boolean algebra. A frame L is *zero-dimensional* if it is join-generated by B(L).

Regarding the f-ring $\mathcal{F}_{\mathcal{P}}(L)$ ($\mathcal{F}_{\mathcal{P}}^*(L)$) of all (bounded) frame maps from $\mathcal{P}(\mathbb{R})$ to a frame L, we use the notation of [20]. In [12], it is shown that for any frame L there is a zero-dimensional frame M such that $\mathcal{F}_{\mathcal{P}}L$ and $\mathcal{F}_{\mathcal{P}}M$ are isomorphic.

The properties of the zero map $z \colon \mathcal{F}_{\mathcal{P}}(L) \to L$, given by $z(f) = f(\{0\})$ that we shall frequently use are listed in the following proposition:

Proposition 2.1. [25] For every $f, g \in \mathcal{F}_{\mathcal{P}}(L)$, we have

- (1) for every $n \in \mathbb{N}$, $z(f) = z(-f) = z(|f|) = z(f^n)$,
- (2) $z(fg) = z(f) \vee z(g)$,
- (3) $z(f+g) \ge z(f) \land z(g)$,
- (4) $z(f+g) = z(f) \wedge z(g)$, while $f, g \ge \mathbf{0}$,
- (5) $z(f) = \top$ if and only if $f = \mathbf{0}$, and
- (6) $z(f) = \bot$ if and only if f is a unit element of $\mathcal{F}_{\mathcal{P}}(L)$.

For every $f \in \mathcal{F}_{\mathcal{P}}(L)$ and every $A \subseteq \mathcal{F}_{\mathcal{P}}(L)$, we put $\cos(f) := f(\mathbb{R} \setminus \{0\})$, $\operatorname{Coz}(A) := \{ \cos(f) : f \in A \}$ and $Z(A) := \{ z(f) : f \in A \}$. Then $\cos(f) = (z(f))' = (z(f))'$, which implies that for every $f, g \in \mathcal{F}_{\mathcal{P}}(L)$, $z(g) \leq z(f)$ if and only if $\cos(f) \leq \cos(g)$ and this is equivalent to the fact that $\cos(f) \prec \operatorname{Coz}(L) \cos(g)$.

On the other hand, Estaji el at. in [13] proved that for every complemented a in L, the map $f_a \colon P(\mathbb{R}) \to L$ given by

belongs to $\mathcal{F}_{\mathcal{P}}(L)$, $f_a^2 = f_a$, $z(f_a) = a'$, $\cos(f_a) = a$ and for every $f \in \mathcal{F}_{\mathcal{P}}(L)$ and every $X \in P(\mathbb{R}),$

$$ff_a(X) = \begin{cases} a' \lor f(X) & \text{if } 0 \in X, \\ a \land f(X) & \text{if } 0 \notin X. \end{cases}$$

Therefore,

$$B(L) = Z(\mathcal{F}_{\mathcal{P}}(L)) = \operatorname{Coz}(\mathcal{F}_{\mathcal{P}}(L)) = \{x \in L : x \in \operatorname{Im}(f) \text{ for some } f \in \mathcal{F}_{\mathcal{P}}(L) \}.$$

An real-trail on L is a function $t: \mathbb{R} \longrightarrow L$ such that $\bigvee_{x \in \mathbb{R}} t(x) = \top$ and $t(x) \land t(y) = \bot$ for every $x, y \in \mathbb{R}$ with $x \neq y$. For every real-trail t on a frame L,

$$\varphi_t \colon \mathcal{P}(\mathbb{R}) \longrightarrow L$$

$$X \longmapsto \bigvee_{x \in X} t(x)$$

is a frame map. Throughout this paper, this notation will be used. In [12], it is shown that for every frame L, there is a zero-dimensional frame M such that $\mathcal{F}_{\mathcal{P}}(L) \cong \mathcal{F}_{\mathcal{P}}(M)$ (see [7]).

We recall from [19, 14] that for every f-ring A with bounded inversion, F(A, L) is the set of all functions from A to L and for every element a of an f-ring A and every $r, s \in \mathbb{Q}$,

$$\delta_{rs}^a := (a - r)^+ \wedge (s - a)^+$$

is nominated as interval projection and a lattice-valued map $c \in F(A, L)$ is called

- (1) cozero lattice-valued map if it satisfies
 - $(c1) \ c(0) = \bot,$
 - (c2) If $x \in A$ is a unit, then $c(x) = \top$,
 - (c3) If $x, y \ge 0$, then $c(x \lor y) = c(x) \lor c(y)$.
 - (c4) If $x, y \ge 0$, then $c(x \wedge y) = c(x) \wedge c(y)$.
- (2) continuous, if $c(\delta_{pq}^x) = \bigvee_{\substack{r,s \in \mathbb{Q}, \\ p < r < s < q}} c(\delta_{rs}^x)$ for any $p,q \in \mathbb{Q}$ and any $x \in A$. (3) bounded if $\bigvee_{p,q \in \mathbb{Q}} c(\delta_{pq}^a) = \top$, for all $a \in A$.
- (4) \mathbb{Q} -compatible if for every $\diamond \in \{+, \cdot, \vee, \wedge\}$, $a, b \in A$, and $r, s, w, z, p, q \in \mathbb{Q}$

$$\langle r, s \rangle \diamond \langle w, z \rangle \subseteq \langle p, q \rangle \Rightarrow c(\delta_{rs}^a) \wedge c(\delta_{wz}^b) \leq c(\delta_{nq}^{a \diamond b}).$$

We also will need the following propositions which appear in [14]. They are counterparts of Lemmas 3.1 and 3.5 in [21].

Proposition 2.2. Let $c \in F(A, L)$ be a bounded cozero lattice-valued map, and let

$$L_c(p, a) = \{ s \in \mathbb{Q} \mid r < s \Rightarrow c(\delta_{rs}^a) \le p \text{ for all } r \in \mathbb{Q} \},$$

and

$$U_c(p, a) = \{ r \in \mathbb{Q} \mid r < s \Rightarrow c(\delta_{rs}^a) \le p \text{ for all } s \in \mathbb{Q} \}$$

for every $(p, a) \in \Sigma L \times A$. Then $(L_c(p, a), U_c(p, a))$ is a Dedekind cut for a real number which is denoted by $\widetilde{p_c}(a)$ for any $(p, a) \in \Sigma L \times A$.

Proposition 2.3. Let $c \in F(A, L)$ be a \mathbb{Q} -compatible bounded continuous cozero lattice-valued map. For each nonzero bounded Riesz map $\phi \colon A \to \mathbb{R}$, if $p \in \Sigma L$ with $\bigvee c(\ker(\phi)) \leq p$, then $\phi = \widetilde{p_c}$.

Let A be an ordered ring. An A-module M is called an ordered module if $x, y \geq 0$ and $a \geq 0$ imply that $x + y \geq 0$ and $ax \geq 0$; and it is called an ℓ -module if it is a lattice with its order; an f-module if for every $a \geq 0$ with $a \in A$, $x, y \in M$, $a(x \wedge y) = ax \wedge ay$. An ℓ -module over $\mathbb Q$ is called a Riesz space; note that every Riesz space is an f-module. A submodule I of M is called an ℓ -ideal if $|a| \leq |b|$ and $b \in I$ imply $a \in I$, where $|a| = a \vee (-a)$. A module homomorphism which preserves the lattice operations is called ℓ -module homomorphism. The ℓ -module homomorphisms between Riesz spaces are called Riesz maps. For more information see [11, 18].

3. Residue class ring of $\mathcal{F}_{\mathcal{P}}(L)$ or $\mathcal{F}_{\mathcal{P}}^*(L)$ modulo an ideal

The notion of restriction of $\alpha \in \mathcal{R}(L)$ to some $a \in L$ is introduced by Banaschewski in [6] corresponding to the topological notion of restricting continuous maps on a space to some open subspace: $\alpha|a$ is the homomorphism $\mathcal{L}(\mathbb{R}) \to \downarrow a$ such that $\alpha|a(p,q) = \alpha(p,q) \wedge a$, that is, the composite of α with the quotient map $L \to \downarrow a$ which takes x to $x \wedge a$. Similarly, we define $f|a:\mathcal{P}(\mathbb{R}) \to \downarrow a$ by $f|a(X) = f(X) \wedge a$ for every $a \in L$ and every $f \in \mathcal{F}_{\mathcal{P}}(L)$.

Remark 3.1. For every $f \in \mathcal{F}_{\mathcal{P}}(L)$, $f \in \mathcal{F}_{\mathcal{P}}^*(L)$ if and only if $f | \cos(f) \in \mathcal{F}_{\mathcal{P}}^*(\downarrow \cos(f))$.

If X is a completely regular topological space and $f, g \in C(X)$ such that $z(g) \subseteq int(z(f))$, then there exists an element $h \in C(X)$ such that f = hg. Also if coz(f) is compact then there exists an $h \in C^*(X)$, such that f = hg see [16]. If L is a completely regular frame and $\alpha, \beta \in \mathcal{R}L$ such that $coz(\alpha) \ll coz(\beta)$ there exists an element $\gamma \in \mathcal{R}L$ such that $\alpha = \gamma\beta$ (see [9]). These facts lead us to the following result.

Lemma 3.2. Let $f, g \in \mathcal{F}_{\mathcal{P}}(L)$ such that $z(g) \leq z(f)$, then there exists an element $h \in \mathcal{F}_{\mathcal{P}}(L)$ such that f = hg. Also if $\cos(f)$ is compact, then there exists an element $h \in \mathcal{F}_{\mathcal{P}}^*(L)$ such that f = hg.

Proof. We define the real-trail $t: \mathbb{R} \to L$ on the frame L by

$$t(x) = \begin{cases} z(g) & \text{if } x = 0\\ g(\{\frac{1}{x}\}) & \text{if } x \neq 0, \end{cases}$$

which implies that

$$g\varphi_t(\{x\}) = \begin{cases} z(g) & \text{if } x = 0\\ \cos(g) & \text{if } x = 1\\ \bot & \text{if } x \neq 1, 0. \end{cases}$$

Consider $h := f\varphi_t$. Then $\cos(h) = \cos(f)$, and for every $x \in \mathbb{R}$,

$$hg(\lbrace x\rbrace) = f\varphi_t g(\lbrace x\rbrace)$$

$$= \bigvee \{ f(\lbrace y\rbrace) \land \varphi_t g(\lbrace y'\rbrace) \colon yy' = x \}$$

$$= \begin{cases} z(f) & \text{if } x = 0 \\ f(\lbrace x\rbrace) & \text{if } x \neq 0 \end{cases}$$

$$= f(\lbrace x\rbrace),$$

which implies that f = hg. Also, if $\cos(f)$ is compact, then $h|\cos(h)$ is bounded and, by Remark 3.1, $h \in \mathcal{F}_{\mathcal{P}}^*(L)$.

As an immediate consequence of Lemma 3.2, we can state the following proposition.

Proposition 3.3. Let I be an ideal of $\mathcal{F}_{\mathcal{P}}(L)$ (resp., $\mathcal{F}_{\mathcal{P}}^*(L)$). For every $f, g \in \mathcal{F}_{\mathcal{P}}(L)$ (resp., $f, g \in \mathcal{F}_{\mathcal{P}}^*(L)$), if $z(f) \leq z(g)$ and $f \in I$, then $g \in I$.

Let $a \in L$ and $f \in \mathcal{F}_{\mathcal{P}}(L)$, we say f on a is nonpositive (resp., nonnegative) if $f|a \leq 0$ (resp., $f|a \geq 0$) and equivalently, if $f((-\infty, 0]) \geq a$ (resp., $f([0, +\infty)) \geq a$). Also, we say f on a does not change sign if $f|a \leq 0$ or $f|a \geq 0$. The next proposition clarifies to some extent the relation between prime ideals and zero elements.

Proposition 3.4. Let I be a proper ideal of $\mathcal{F}_{\mathcal{P}}(L)$. Then the following statements are equivalent.

- (1) I is a prime ideal.
- (2) I contains a prime ideal.
- (3) For every $f, g \in \mathcal{F}_{\mathcal{P}}(L)$, if fg = 0, then $f \in I$ or $g \in I$.
- (4) For every $f \in \mathcal{F}_{\mathcal{P}}(L)$, there is a zero element belonging to Z[I] on which f does not change sign.
- (5) For every $f \in \mathcal{F}_{\mathcal{P}}(L)$, there is an element g belonging to I such that $f(0, +\infty) \leq \cos(g)$ or $f(-\infty, 0) \leq \cos(g)$.

(6) I is a maximal ideal.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$. Trivial.

- $(3) \Rightarrow (4)$. Consider $f \in \mathcal{F}_{\mathcal{P}}(L)$. Since $(f \vee \mathbf{0})(f \wedge \mathbf{0}) = \mathbf{0}$, we conclude that $f \vee \mathbf{0} \in I$ or $f \wedge \mathbf{0} \in I$. If $f \vee \mathbf{0} \in I$, then $f(0, +\infty) \leq (f \vee \mathbf{0})(0, +\infty) = \cos(f \vee \mathbf{0})$, which implies that $f(-\infty, 0] \geq z(f \vee \mathbf{0})$, that is $f|z(f \vee \mathbf{0}) \leq 0$. Similarly, if $f \wedge \mathbf{0} \in I$, then $f|z(f \wedge \mathbf{0}) \geq 0$.
- $(4) \Rightarrow (5)$. Let $f \in \mathcal{F}_{\mathcal{P}}(L)$ be given. Then there is an element $g \in I$ such that $f|z(g) \leq 0$ or $f|z(g) \geq 0$, which implies that $z(g) \leq f(-\infty, 0]$ or $z(g) \leq f[0, +\infty)$, and so $f(0, +\infty) \leq \cos(g)$ or $f(-\infty, 0) \leq \cos(g)$.
- $(5) \Rightarrow (1)$. Let $f, g \in \mathcal{F}_{\mathcal{P}}(L)$ with $fg \in I$ be given. Then for the element h = |f| |g| in $\mathcal{F}_{\mathcal{P}}(L)$, by hypothesis, there exists an element $\alpha \in I$ such that $h(0, +\infty) \leq \cos(\alpha)$ or $h(-\infty, 0) \leq \cos(\alpha)$. If $h(0, +\infty) \leq \cos(\alpha)$ we have

$$\cos(|f|) = (h + |g|)(0, +\infty) \le h(0, +\infty) \lor |g|(0, +\infty) \le \cos(\alpha) \lor |g|(0, +\infty) = \cos(|\alpha| \lor |g|).$$

Therefore,

$$\cos(f) = \cos(|f|) \wedge \cos(|\alpha| \vee |g|) = \cos(|f\alpha| + |fg|) \in \cos(I),$$

which implies that $f \in I$. We note similarly that if $h(-\infty,0) \leq \cos(\alpha)$, then $g \in I$. Hence, I is a prime ideal.

(1) \Leftrightarrow (6). By Proposition 3.3 in [12], it is clear, since $\mathcal{F}_{\mathcal{P}}(L)$ is a regular ring. \Box

Remark 3.5. We recall that an ideal I of an f-ring A is an ℓ -ideal if $|x| \leq |y|$ and $y \in I$ imply $x \in I$. Hence, by Proposition 3.3, every ideal $\mathcal{F}_{\mathcal{P}}(L)$ is an ℓ -ideal and also if I is an ideal of $\mathcal{F}_{\mathcal{P}}(L)$ then I is a convex ideal, that is, if whenever $0 \leq x \leq y$, and $y \in I$, then $x \in I$. Hence, by Theorem 5.2 in [16], $\frac{\mathcal{F}_{\mathcal{P}}(L)}{I}$ is a partially ordered ring, according to the definition:

$$f+I\geq 0$$
 if there exists an element $g\in\mathcal{F}_{\mathcal{P}}(L)$ such that $g\geq 0$ and $f-g\in I.$

Throughout this paper, this notation will be used. Also, by Theorem 5.3 in [16], the following statements hold for every ideal I of $\mathcal{F}_{\mathcal{P}}(L)$ and every $f, g \in \mathcal{F}_{\mathcal{P}}(L)$.

- (1) $f \in I$ if and only if $|f| \in I$.
- (2) $f, g \in I$ implies $f \lor g \in I$.
- (3) $(f \vee g) + I = (f+I) \vee (g+I)$.
- (4) $f + I \ge 0$ if and only if $f |f| \in I$.

The above results are true for $\mathcal{F}_{\mathcal{D}}^*(L)$.

To establish that A is totally ordered, it is enough to show that every element is comparable with 0. Therefore, in the following proposition, we have determined the elements of $\frac{\mathcal{F}_{\mathcal{P}}(L)}{I}$ which are the nonnegative elements.

Proposition 3.6. Let I be a proper ideal of $\mathcal{F}_{\mathcal{P}}(L)$. Then for every $f \in \mathcal{F}_{\mathcal{P}}(L)$, the following statements hold.

- (1) $f + I \ge 0$ if and only if f|a is nonnegative on at least one a of Z[I].
- (2) If $f(0,+\infty) \ge a$ on at least one a of Z[I], then f+I>0, and if I is maximal, the converse holds as well.
- *Proof.* (1). Necessity. By Remark 3.5, $z(f-|f|) = f([0,+\infty)) \in Z[I]$. Therefore, f and |f| have the same sign on z(f-|f|), and hence f is nonnegative on z(f-|f|).

Sufficiency. Let $f|z(g) \ge 0$ for some $g \in I$, then $z(|f| - f) = f([0, +\infty)) \ge z(g)$ for some $g \in I$. By Lemma 3.2, there exists an element $k \in \mathcal{F}_{\mathcal{P}}(L)$ such that $|f| - f = gk \in I$. We infer that $f + I \ge 0$.

(2) Let $f \in \mathcal{F}_{\mathcal{P}}(L)$ and $f(0, +\infty) \geq a$ for some $a \in Z[I]$, then $z(f) \wedge a = \bot$, and hence $f \notin I$. By the first statement, f + I > 0.

Let I be a maximal ideal and f+I>0. Then, by the first statement, there exists an element $a\in Z[I]$ such that $f|a\geq 0$. Since $f\not\in I$, we conclude that there exists an element $b\in Z[I]$ such that $b\wedge z(f)=\bot$, which implies that $b\wedge a\in Z[I]$ and $f(0,+\infty)\geq a\wedge b$. \Box

The following example shows that the maximal condition on I is necessary in the inverse of the second statement of the above proposition.

Example 3.7. Suppose that I and J are ideals of $\mathcal{F}_{\mathcal{P}}(L)$ such that $I \subsetneq J$. If $f \in J \setminus I$, then $I + f^2 > 0$. Since $z(f) = z(f^2) \in Z[J]$, we infer that $z(f) \wedge a \neq \bot$, for any $a \in Z[J] \supseteq Z[I]$, which implies that $z(f) \wedge a \neq \bot$, for any $a \in Z[I]$. Therefore, there is not an element $a \in Z[I]$ such that $f(0, +\infty) \ge a$.

The relation between prime ideals of $\mathcal{F}_{\mathcal{P}}(L)$ and the residue class fields of $\mathcal{F}_{\mathcal{P}}(L)$ is clarified by the next proposition.

Proposition 3.8. For every proper ideal I of $\mathcal{F}_{\mathcal{P}}(L)$, $\frac{\mathcal{F}_{\mathcal{P}}(L)}{I}$ is a totally ordered ring if and only if I is a prime ideal.

Proof. Necessity. Consider $f \in \mathcal{F}_{\mathcal{P}}(L)$. Since $\frac{\mathcal{F}_{\mathcal{P}}(L)}{I}$ is a totally ordered ring, we conclude that $f+I \leq 0$ or $f+I \geq 0$, which by the first statement implies that there is a zero element belonging to Z[I] on which f does not change sign, and so, by Proposition 3.4, I is a prime ideal.

Sufficiency. Consider f+I and g+I are two elements of $\frac{\mathcal{F}_{\mathcal{P}}(L)}{I}$. By Proposition 3.4, there is a zero element belonging to Z[I] on which f-g does not change sign, which implies that $f+I \leq g+I$ or $f+I \geq g+I$. Therefore, $\frac{\mathcal{F}_{\mathcal{P}}(L)}{I}$ is totally ordered ring. \square

It is well known that a subring R' of a partially ordered ring R is called an absolutely convex if $f \in R'$ and $|g| \leq |f|$, then $g \in R'$ for every $f, g \in R$. It is clear that $\mathcal{F}_{\mathcal{P}}^*(L)$ is an absolutely convex subring of $\mathcal{F}_{\mathcal{P}}(L)$.

Proposition 3.9. Let P be an ideal of an absolutely convex subring R of $\mathcal{F}_{\mathcal{P}}(L)$. If P is a semiprime ideal of R, then P is an absolutely convex ideal of R.

Proof. Let P be a prime ideal of R, and let $(f,g) \in R \times P$ with $|f| \leq |g|$ be given. We define the real-trail $t: \mathbb{R} \to L$ on the frame L by

$$t(x) = \begin{cases} z(f) & \text{if } x = 0\\ \bigvee \{ f(\{y\}) \land g(\{z\}) \colon y, z \in \mathbb{R} \setminus \{0\}, \ \frac{y^2}{z} = x \} & \text{if } x \neq 0. \end{cases}$$

Then $f^2 = g\varphi_t \in P$, which implies that $f \in P$. \square

4. Real ideals in
$$\mathcal{F}_{\mathcal{P}}(L)$$

For every proper ideal P of $\mathcal{F}_{\mathcal{P}}(L)$, it is clear that $\theta \colon \mathbb{R} \to \frac{\mathcal{F}_{\mathcal{P}}(L)}{P}$ given by $r \mapsto \mathbf{r} + P$ is a monomorphism, which implies that $\frac{\mathcal{F}_{\mathcal{P}}(L)}{P}$ has a copy of \mathbb{R} . This fact leads to the following definition.

Definition 4.1. Let R be a subring of $\mathcal{F}_{\mathcal{P}}(L)$. A maximal ideal P of R is called real if $\frac{R}{P} \cong \mathbb{R}$, otherwise it is called hyper-real.

We recall from [16] that a totally ordered field F is said to be *archimedean* if for every element $a \in F$, there exists $n \in \mathbb{N}$ such that $n \geq a$. We will also need the following result which appears in [16, Theorem 0.21].

Proposition 4.2. A maximal ideal P of $\mathcal{F}_{\mathcal{P}}(L)$ (resp., $\mathcal{F}_{\mathcal{P}}^*(L)$) is real if and only if $\frac{\mathcal{F}_{\mathcal{P}}(L)}{P}$ (resp., $\frac{\mathcal{F}_{\mathcal{P}}^*(L)}{P}$) is archimedean.

We recall from [16] that a nonarchimedean field is characterized (among all totally ordered fields) by the presence of infinitely large elements, that is, elements a such that a > n for every $n \in \mathbb{N}$

The following proposition relates unbounded functions of $\mathcal{F}_{\mathcal{P}}(L)$ with infinitely large elements modulo maximal ideals.

Proposition 4.3. Let M be a maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$. Then for every $f \in \mathcal{F}_{\mathcal{P}}(L)$, the following statements are equivalent.

- (1) |f + M| is an infinitely large element of $\frac{\mathcal{F}_{\mathcal{P}}(L)}{M}$.
- (2) f|a is unbounded for every $a \in Z[M]$.
- (3) $|f|[n, +\infty) \in Z[M]$ for every $n \in \mathbb{N}$.

Proof. Let $n \in \mathbb{N}$ be given. Then, by Proposition 3.6, $|f+M| \ge n$ if and only if there exists an element $a \in Z[M]$ such that $|f||a \ge n$ if and only if $|f|[n, +\infty)$ is greater than or equal to a member of Z[M] if and only if $|f|[n, +\infty) \in Z[M]$.

Definition 4.4. An ideal I of a subring of $\mathcal{F}_{\mathcal{P}}(L)$ is fixed if $\bigvee_{f \in I} \cos(f) \neq \top$ and it is a free ideal if $\bigvee_{f \in I} \cos(f) = \top$.

The following proposition relates compact elements of L with proper free ideals of $\mathcal{F}_{\mathcal{P}}(L)$ or $\mathcal{F}_{\mathcal{P}}^*(L)$.

Lemma 4.5. Let L be a zero-dimensional frame and $a \in L$. Then the following statements hold.

- (1) If a is a compact element of L, then $a \in B(L)$.
- (2) a is a compact element of L if and only if $a \in \text{Coz}[I] \setminus Z[I]$ for every proper free ideal I of $\mathcal{F}_{\mathcal{P}}(L)$.
- (3) a is a compact element of L if and only if $a \in \operatorname{Coz}[I] \setminus Z[I]$ for every proper free ideal I of $\mathcal{F}_{\mathcal{P}}^*(L)$.
- (4) a is a compact element of L if and only if $a \in \text{Coz}(M)$ for every free maximal ideal M of $\mathcal{F}_{\mathcal{P}}(L)$.

Proof. (1). It is clear.

(2). Necessity. By the first statement, $a = \cos(f_a)$. Then

$$a = \cos\left(f_{a}\right) \wedge \top = \cos\left(f_{a}\right) \wedge \bigvee_{f \in I} \cos\left(f\right) = \bigvee_{f \in I} \left(\cos\left(f_{a}\right) \wedge \cos\left(f\right)\right) = \bigvee_{f \in I} \cos\left(f_{a}f\right),$$

which implies that there are $f_1, f_2, \ldots, f_n \in I$ such that

$$a = \bigvee_{i=1}^{n} \cos(f_a f_i) = \cos\left(\sum_{i=1}^{n} (f_a f_i)^2\right).$$

The proof is now complete, because $\sum_{i=1}^{n} (f_a f_i)^2 \in I$. The rest is obvious.

Sufficiency. Let a be a noncompact element of L. Therefore, there is a subset S of L such that $\bigvee S = a$ and $\bigvee F \neq a$ for every finite subset F of S. We assume that I is the ideal of $\mathcal{F}_{\mathcal{P}}(L)$ generated by

$$\{f_{a'}\} \cup \{f \in \mathcal{F}_{\mathcal{P}}(L) \colon \operatorname{coz}(f) \leq \bigvee F \text{ for some finite subset } F \text{ of } S \}.$$

Then I is a proper free ideal and $a \notin \cos[I]$, which is a contradiction. The proof is now complete.

(3). The proof is similar to the proof of the second statement. \Box

By the following proposition, we show that whenever B(L) is a sub- σ -frame of L, then the equality $\mathcal{F}_{\mathcal{P}}(L) = \mathcal{F}_{\mathcal{P}}^*(L)$ implies that L is compact.

Proposition 4.6. The following statements hold for every zero-dimensional frame L.

- (1) If L is compact, then $\mathcal{F}_{\mathcal{P}}(L) = \mathcal{F}_{\mathcal{P}}^*(L)$.
- (2) If B(L) is a sub- σ -frame of L and $\mathcal{F}_{\mathcal{P}}(L) = \mathcal{F}_{\mathcal{P}}^*(L)$, then L is compact.

Proof. (1). It is evident.

(2). Let L be not compact, and let $S \subseteq L$ such that $\bigvee S = \top$ and $\bigvee F \neq \top$ for every finite subset F of S. For every $a \in S$, there is a subset C_a of B(L) such that $a = \bigvee C_a$. Consider $C := \bigcup_{a \in A} C_a$. Then $\bigvee F \neq \top$ for every finite subset F of C. Therefore, without losing generality we may assume that $\bigvee (C \setminus \{c\}) \neq \top$ for every $c \in C$. Let $B := \{c_{n+1} \in C : n \in \mathbb{N}\}$ be an infinite countable subset of C. Since B(L) is a σ -frame, we conclude that $\bigvee B$ has a complement in L, say c_1 . We put $b_n := \bigvee_{i=1}^n c_i$ for every $n \in \mathbb{N}$, and define the real-trail $t : \mathbb{R} \to L$ on L by

$$t(x) = \begin{cases} b_1 & \text{if } x = 1 \\ b_x \wedge b'_{x-1} & \text{if } x \in \mathbb{N} \setminus \{1\} \\ \bot & \text{otherwise.} \end{cases}$$

It is clear that $\varphi_t \in \mathcal{F}_{\mathcal{P}}(L) \setminus \mathcal{F}_{\mathcal{P}}^*(L)$, which is a contradiction. \Box

Here, we show by an example that the condition "B(L) is a sub- σ -frame of L" is necessary in Proposition 4.6.

Example 4.7. We recall from [16] that the set of all ordinals less than the first uncountable ordinal is denoted by $W(\omega_1)$, where ω_1 is the first uncountable ordinal. The topology on $W(\omega_1)$ is the interval topology. The space $W(\omega_1)$ is pseudocompact but not compact, which implies that $\mathcal{F}_{\mathcal{P}}(W(\omega_1)) = \mathcal{F}_{\mathcal{P}}^*(W(\omega_1))$.

Remark 4.8. Let a be an element of a frame L. If $x \in B(L) \cap \downarrow a$, then $x \wedge (x' \wedge a) = \bot$ and $x \vee (x' \wedge a) = a$. Hence, $B(L) \cap \downarrow a \subseteq B(\downarrow a)$. Therefore, if L is a zero-dimensional frame, then $\downarrow a$ is a zero-dimensional frame. Also, if $a \in B(L)$, then $B(L) \cap \downarrow a = B(\downarrow a)$.

We recall that a subsete \mathcal{F} of L is called a $z_{\mathcal{F}_{\mathcal{D}}}$ -filter on L if the following statements hold:

- $(1) \ 0 \notin \mathcal{F},$
- (2) for every $a, b \in \mathcal{F}$, there exists a $c \in \mathcal{F}$ that $c \leq a \wedge b$, and
- (3) if $b \in \mathcal{F}$, $a \in L$, and $b \leq a$, then $a \in \mathcal{F}$.

It is evident that $\mathcal{F} \subseteq L$ is a $z_{\mathcal{F}_{\mathcal{P}}}$ -filter (resp., $z_{\mathcal{F}_{\mathcal{P}}}$ -ultrafilter) if and only if a proper filter (resp., an ultrafilter) of B(L). Therefore, a subsete I of $\mathcal{F}_{\mathcal{P}}(L)$ is a proper ideal (resp., maximal ideal)

of $\mathcal{F}_{\mathcal{P}}(L)$ if and only if the family $z[I] = \{z(f) \mid f \in I\}$ is a filter (resp., ultrafilter) on B(L). Also, a subsete \mathcal{F} of B(L) is a proper filter (resp., an ultrafilter) of B(L) if and only if the family $z^{-1}[\mathcal{F}] = \{f \mid z(f) \in \mathcal{F}\}$ is a proper ideal (resp., maximal ideal) of $\mathcal{F}_{\mathcal{P}}(L)$.

Proposition 4.9. The following statements hold for every zero-dimensional frame L and every $f \in \mathcal{F}_{\mathcal{P}}(L)$.

- (1) $f \in \mathcal{F}_{\mathcal{P}}(L) \setminus \mathcal{F}_{\mathcal{P}}^*(L)$ if and only if there exists a maximal ideal M of $\mathcal{F}_{\mathcal{P}}(L)$ such that |f + M| is an infinitely large element of $\frac{\mathcal{F}_{\mathcal{P}}(L)}{M}$ and M is not real.
- (2) Suppose that $a \in B(L)$ such that $B(\downarrow a)$ is a sub- σ -frame of $\downarrow a$. Then a is a compact element of L if and only if $a \notin Z[I]$ for every proper free ideal I in $\mathcal{F}_{\mathcal{P}}(L)$.
- (3) |f + M| is infinitely large for every free maximal ideal M in $\mathcal{F}_{\mathcal{P}}(L)$ if and only if for every $a \in B(L)$, a is non-compact element of L implies $f|a \in \mathcal{F}_{\mathcal{P}}(\downarrow a) \setminus \mathcal{F}_{\mathcal{P}}^*(\downarrow a)$.

Proof. (1) Necessity. Let $f \in \mathcal{F}_{\mathcal{P}}(L) \setminus \mathcal{F}_{\mathcal{P}}^*(L)$ be given. We put $a_n := |f|[n, +\infty)$ for any $n \in \mathbb{N}$. Since for every finite subset S of \mathbb{N} , we have $\bot \neq \bigwedge_{i \in S} a_i \in B(L)$, we conclude that there exists an ultrafilter \mathcal{F} of B(L) containing $\{a_n : n \in \mathbb{N}\}$. Hence, $M := z^{\leftarrow}[\mathcal{F}]$ is a maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ and, by Proposition 4.3, |f + M| is an infinitely large element of $\frac{\mathcal{F}_{\mathcal{P}}(L)}{M}$, and also, by Proposition 4.2, M is not real.

Sufficiency. It is obvious.

(2) Necessity. By Lemma 4.5, it is clear.

Sufficiency. Let $a \in B(L)$ be not a compact element of L, then $\downarrow a$ is not a compact frame, which from Proposition 4.6 and Remark 4.8 imply that there is an element $f \in \mathcal{F}_{\mathcal{P}}(\downarrow a) \setminus \mathcal{F}_{\mathcal{P}}^*(\downarrow a)$. We define the real-trail $t \colon \mathbb{R} \to L$ on the frame L by

$$t(x) = \begin{cases} f(\{x-1\}) & \text{if } x > 1 \\ z(f) \lor a' & \text{if } x = 0 \\ f(\{x+1\}) & \text{if } x < -1 \\ \bot & \text{if } 0 < x \le 1 \text{ or } -1 \le x < 0. \end{cases}$$

Hence, $\varphi_t \in \mathcal{F}_{\mathcal{P}}(L) \setminus \mathcal{F}_{\mathcal{P}}^*(L)$. For any $n \in \mathbb{N}$, we put $a_n := |\varphi_t|([n, -))$. Now, similar to the proof of the first statement, there exists a maximal ideal M of $\mathcal{F}_{\mathcal{P}}(L)$ such that it is not real and $\{a_n : n \in \mathbb{N}\} \subseteq Z[M]$. Therefore, M is a free maximal ideal M of $\mathcal{F}_{\mathcal{P}}(L)$ and $a \in Z[M]$, which is a contradiction.

(3) Necessity. Let $a \in B(L)$ be a non-compact element of L. Then, by Lemma 4.5, there exists a proper free ideal I of $\mathcal{F}_{\mathcal{P}}(L)$ such that $a \in Coz[I] \setminus Z[I]$. Let M be a free maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ with $I \subseteq M$. If $a' \in Z[M]$, then $\bot = a \land a' \in Z[M]$, which is a contradiction and this implies that $a \in Z[M]$. Therefore, by Proposition 4.3, $f|a \in \mathcal{F}_{\mathcal{P}}(\downarrow a) \setminus \mathcal{F}_{\mathcal{P}}^*(\downarrow a)$.

Sufficiency. We argue by contradiction. Let us assume that there exists a free maximal ideal M of $\mathcal{F}_{\mathcal{P}}(L)$ such that |f+M| is not an infinitely large element of $\frac{\mathcal{F}_{\mathcal{P}}(L)}{M}$. Then, by Proposition

4.3, there exists an element $a \in Z[M]$ such that f|a is bounded. The hypothesis now implies that $a \in B(L)$ is a compact element of L, and so, by Lemma 4.5, $a \in Coz[M] \setminus Z[M]$, which is a contradiction. \square

The following proposition shows the connection between real maximal ideals and compact frames.

Proposition 4.10. The following statements hold for every zero-dimensional frame L.

- (1) Every maximal ideal of $\mathcal{F}_{\mathcal{P}}^*(L)$ is real.
- (2) If L is compact, then every maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ is real.
- (3) If every maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ is real and B(L) is a sub- σ -frame of L, then L is compact.
- *Proof.* (1). If M is a maximal ideal of $\mathcal{F}^*_{\mathcal{P}}(L)$ and $f \in \mathcal{F}^*_{\mathcal{P}}(L)$, then $|f + M| \leq n$ for some $n \in \mathbb{N}$, which from Proposition 4.2 implies that M is real.
 - (2). By Proposition 4.6 and by the first statement, it is evident.
- (3). By Proposition 4.6, there exists an element $f \in \mathcal{F}_{\mathcal{P}}(L) \setminus \mathcal{F}_{\mathcal{P}}^*(L)$. By Proposition 4.9, there exists a maximal ideal M of $\mathcal{F}_{\mathcal{P}}(L)$ such that |f + M| is an infinitely large element of $\frac{\mathcal{F}_{\mathcal{P}}(L)}{M}$ and M is not real, which is a contradiction. \square

Example 4.11. We recall from [16] that the set of all ordinals less than the first uncountable ordinal is denoted by $W(\omega_1)$, where ω_1 is the first uncountable ordinal. The topology on $W(\omega_1)$ is the interval topology. $W(\omega_1)$ is pseudocompact but not compact, which implies that $\mathcal{F}_{\mathcal{P}}(W(\omega_1)) = \mathcal{F}_{\mathcal{P}}^*(W(\omega_1))$.

Example 4.12. Let $a, b \in \mathbb{R} \setminus \mathbb{Q}$ with a < b and $X := \{r \in \mathbb{Q} : a < r < b\}$ be given. If $L := \{O \cap X : O \in \mathfrak{O}(\mathbb{R})\}$, then the following statements hold.

- (1) L is a zero-dimensional frame.
- (2) B(L) is not a sub- σ -frame of L.
- (3) L is not a compact frame.
- (4) Every maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ is real.

The next result is a new characterization of compact frames in terms of fixed ideals of $\mathcal{F}_{\mathcal{P}}(L)$.

Proposition 4.13. The following statements are equivalent for every zero-dimensional frame L.

- (1) L is compact.
- (2) Every proper ideal of $\mathcal{F}_{\mathcal{P}}(L)$ $(\mathcal{F}_p^*(L))$ is fixed.

(3) Every maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ $(\mathcal{F}_p^*(L))$ is fixed.

Proof. (1) \Rightarrow (2). Let I be a free proper ideal of $\mathcal{F}_{\mathcal{P}}(L)$. Since, by Lemma 4.5, $\top \in \operatorname{coz}(I)$, we conclude that $I = \mathcal{F}_{\mathcal{P}}(L)$, which is a contradiction.

- $(2) \Rightarrow (3)$. It is clear.
- $(3) \Rightarrow (1)$. Let $\{a_{\lambda}\}_{{\lambda} \in \Lambda} \subseteq L$ such that $\top = \bigvee_{{\lambda} \in \Lambda} a_{\lambda}$. Without loss of generality, we can assume that $\{a_{\lambda}\}_{{\lambda} \in \Lambda} \subseteq B(L)$. It is clear that $I = \langle f_{a_{\lambda}} : {\lambda} \in {\Lambda} \rangle$ is an ideal of $\mathcal{F}_{\mathcal{P}}(L)$. If $I \neq \mathcal{F}_{\mathcal{P}}(L)$, then there exists a maximal ideal M such that $I \subseteq M$, and so

$$\top = \bigvee_{\lambda \in \Lambda} a_{\lambda} = \bigvee Coz(I) \le \bigvee Coz(M),$$

which is a contradiction. Therefore, $I = \mathcal{F}_{\mathcal{P}}(L)$ and there exists a finite subset Λ' of Λ such that $\top = \cos(\mathbf{1}) = \bigvee_{\lambda \in \Lambda'} a_{\lambda}$. The proof is now complete \square

We recall that a subset C of a frame L is said to have the *countable meet property* provided that the meet of any countable number of members of C is not the bottom.

We recall from [16] that a nonarchimedean field is characterized (among all totally ordered fields) by the presence of infinitely small elements, that is, elements a such that $a < \frac{1}{n}$ for every $n \in \mathbb{N}$.

The next result is a characterization of real maximal ideals of $\mathcal{F}_{\mathcal{P}}(L)$.

Proposition 4.14. Let M be a maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ (resp., $\mathcal{F}_{\mathcal{P}}^*(L)$). Consider the following conditions on M.

- (1) M is real.
- (2) Z[M] is closed under countable meet.
- (3) Z[M] has the countable meet property.

Then $(2)\Rightarrow (3)\Rightarrow (1)$ and if B(L) is a sub- σ -frame of a zero-dimensional frame L, then three conditions are equivalent.

Proof. (2) \Rightarrow (3). It is clear, because $\bot \notin Z[M]$.

- $(3) \Rightarrow (1)$. If M is not real, then there is an element $f \in \mathcal{F}_{\mathcal{P}}(L)$ such that f + M is infinitely large, which, by Proposition 4.3, implies that $z_n := |f|[n, +\infty) \in Z[M]$ for every $n \in \mathbb{N}$. It is clear that $\bigwedge_{n \in \mathbb{N}} z_n = \bot$, which is a contradiction.
- $(1) \Rightarrow (2)$. Let B(L) be a sub- σ -frame of a zero-dimensional frame L. Consider $\{z_n\}_{n \in \mathbb{N}}$ in Z[M] with $z := \bigwedge_{n \in \mathbb{N}} z_n \notin Z[M]$. We put $b_1 = z'_1$ and $b_i = z'_i \wedge (\bigwedge_{j=1}^{i-1} z_j)$ for every $i \geq 2$. Consider $g_n = f_{b_n} \wedge 2^{-n}$ for every $n \in \mathbb{N}$. Hence, $\{g_n\}_{n \in \mathbb{N}} \subseteq M$. We define the real-trail

 $t \colon \mathcal{P}(\mathbb{R}) \to L$ on the frame L by

$$t(r) = \begin{cases} \bigwedge_{n \in \mathbb{N}} z_n & \text{if } r = 0\\ b_n & \text{if } r = 2^{-n}, \text{ for some } n \in \mathbb{N}\\ \bot & \text{otherwise.} \end{cases}$$

Then the following statements hold.

- (1) $\sum_{i=1}^{n} g_i = \bigvee_{i=1}^{n} g_i \in M$.
- (2) $\bigvee_{i\in\mathbb{N}} g_i = \varphi_t$.
- (3) $\cos(\bigvee_{i=1}^n g_i) = \bigvee_{i \in \mathbb{N}} b_i$.
- (3) $z(\varphi_t) = \bigwedge_{n \in \mathbb{N}} z_n \notin Z[M]$ and $\varphi_t \notin M$.

Then $0 \neq \varphi_t + M = \varphi_t + \sum_{i=1}^n g_i + M \leq 2^{-n}$ for every $n \in \mathbb{N}$, which implies that $\varphi_t + M$ is infinitely small element of $\frac{\mathcal{F}_{\mathcal{P}}(L)}{M}$, and so $\frac{\mathcal{F}_{\mathcal{P}}(L)}{M}$ is not archimedean. Therefore, by Proposition 4.2, M is not real, which is a contradiction. \square

Definition 4.15. An ultrafilter \mathcal{F} of B(L) is called a real ultrafilter if $Z^{\leftarrow}(\mathcal{F})$ is a real maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$.

Corollary 4.16. Let \mathcal{F} be an ultrafilter \mathcal{F} of B(L). Then the following statements hold.

- (1) If \mathcal{F} is closed under countable meet, then \mathcal{F} is a real ultrafilter of B(L).
- (2) If B(L) is a sub- σ -frame of a zero-dimensional frame L and \mathcal{F} is a real ultrafilter of B(L), then
 - (a) \mathcal{F} is closed under countable meet, and
 - (b) if $\{f_n : n \in \mathbb{N}\} \subseteq \mathcal{F}_{\mathcal{P}}(L)$ such that $\bigwedge_{n \in \mathbb{N}} z(f_n) \in \mathcal{F}$, then $z(f_n) \in \mathcal{F}$ for some $n \in \mathbb{N}$.

Proof. (1) and 2(a) follow from Proposition 4.14.

(b). We argue by contradiction. Let us assume that $\{z(f_n)\}_{n\in\mathbb{N}}\cap\mathcal{F}=\emptyset$. Then for every $n\in\mathbb{N}$, there is an element $z(g_n)\in\mathcal{F}$ such that $z(f_n)\wedge z(g_n)=\bot$. By the statement (a), $\bigwedge_{n\in\mathbb{N}}z(g_n)\in\mathcal{F}$ and, by hypothesis, $\bot=(\bigwedge_{n\in\mathbb{N}}z(g_n))\wedge(\bigwedge_{n\in\mathbb{N}}z(f_n))\in\mathcal{F}$, which is a contradiction. \square

By Proposition 4.13, Example 4.12 shows that B(L) is a sub- σ -frame of L is necessary in the following proposition.

Proposition 4.17. Let B(L) be a sub- σ -frame of a zero-dimensional frame L. Then every fixed maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ is real.

Proof. Consider M is a fixed maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$. Let $\{f_n\}_{n\in\mathbb{N}}\subseteq M$ with $\bigwedge_{n\in\mathbb{N}}z(f_n)=\bot$ be given. Since B(L) is the sub- σ -frame of L, we conclude that

$$\bigvee_{f \in M} \cos(f) \ge \bigvee_{n \in \mathbb{N}} \cos(f_n) = (\bigvee_{n \in \mathbb{N}} \cos(f_n))'' = (\bigwedge_{n \in \mathbb{N}} z(f_n))' = \top,$$

which is a contradiction. Therefore, by Proposition 4.14, M is a real maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$.

The following example shows that the above proposition does not hold if B(L) is not a sub- σ -frame of the zero-dimensional frame L.

Example 4.18. Let $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{Q}$ and $\{b_n\}_{n\in\mathbb{N}}\subseteq\mathbb{Q}$ such that for every $n\in\mathbb{N}$, $a_n< a_{n+1}< b_{n+1}< b_n$ and $\lim_{n\to\infty}a_n=\sqrt{2}=\lim_{n\to\infty}b_n$. Consider $L:=\{O\cap(\mathbb{R}\setminus\mathbb{Q})\colon O\in\mathfrak{O}(\mathbb{R})\}$, $c:=\{x\in\mathbb{R}\setminus\mathbb{Q}\colon x\neq\sqrt{2}\}\in L$ and $c_n:=\{x\in\mathbb{R}\setminus\mathbb{Q}\colon x< a_n\text{ or }b_n< x\}\in L$ for every $n\in\mathbb{N}$. Then $\{f_{c_n}\}$ is a subset of the fixed maximal ideal of $M_c:=\{f\in F_{\mathcal{P}}(L)\colon \cos(f)\leq c\}$. By Proposition 4.14, since $\bigwedge_{n\in\mathbb{N}}z(f_{c_n})=\bot$, we conclude that M_c is not a real maximal. It is clear that B(L) is not a sub- σ -frame of the zero-dimensional frame L.

Now, it is normal to ask what are the frames for which every real maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ is fixed. This leads us to the following definition.

Definition 4.19. A frame L is said to be a $\mathcal{F}_{\mathcal{P}}$ -realcompact provided that every real maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ is fixed.

We recall that a frame L is said to be a Lindel"of frame provided that every subset of S, $\bigvee S = \top$ implies there exists a countable subset S' of S such that $\bigvee S' = \top$.

Proposition 4.20. If B(L) is a sub- σ -frame of a Lindelöf zero-dimensional frame L, then L is an $\mathcal{F}_{\mathcal{P}}$ -realcompact frame.

Proof. Consider M is a real maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$. We show that M is fixed. If not, there exists a family $\{f_n\}_{n\in\mathbb{N}}\subseteq M$ such that $\bigvee_{n\in\mathbb{N}}\cos(f_n)=\top$, because L is Lindelöf. By Propositions 4.14 and 4.17, $\bot=\bigwedge_{n\in\mathbb{N}}z(f_n)\in Z[M]$, which is a contradiction. \Box

In view of Propositions 4.2 and 4.13, we obtain the following proposition.

Proposition 4.21. Let L be a zero-dimensional frame. L is a compact frame if and only if L is an $\mathcal{F}_{\mathcal{P}}$ -realcompact frame, and $\frac{\mathcal{F}_{\mathcal{P}}(L)}{M}$ is archimedean for every maximal ideal M of $\mathcal{F}_{\mathcal{P}}(L)$.

5. Free ideals of $\mathcal{F}_{\mathcal{P}}(L)$

It is well known that if X is a completely regular topological space, then

- (1) $C_K(X)$ is equal to the intersection of all free ideals C(X) and this is true for $C^*(X)$.
- (2) $C_{\infty}(X)$ is equal to the intersection of all free maximal ideals $C^*(X)$.

In this section, we show a counterpart of above result in $\mathcal{F}_{\mathcal{P}}(L)$ and $\mathcal{F}_{\mathcal{P}}^*(L)$. We begin with the following definition.

Definition 5.1. For every frame L, $\mathcal{F}_{\mathcal{P}_K}(L)$ is the family of all $f \in \mathcal{F}_{\mathcal{P}}(L)$ such that $\cos(f)$ is a compact element of L.

The following proposition is a counterpart of (1) in $\mathcal{F}_{\mathcal{P}}(L)$ and $\mathcal{F}_{\mathcal{P}}^*(L)$.

Proposition 5.2. Let L be a zero-dimensional frame. Then $\mathcal{F}_{\mathcal{P}_K}(L)$ is equal to the intersection of all free ideals $\mathcal{F}_{\mathcal{P}}(L)$ and this is true for $\mathcal{F}_{\mathcal{P}}^*(L)$.

Proof. Consider $f \notin \mathcal{F}_{\mathcal{P}_K}(L)$. Since $\cos(f)$ is not compact, we conclude from Lemma 4.5 that there exists a free maximal ideal M of $\mathcal{F}_{\mathcal{P}}(L)$ such that $\cos(f) \in \mathbb{Z}[M]$, which implies that $f \notin M$. Let I be an arbitrary free ideal of $\mathcal{F}_{\mathcal{P}}(L)$ and $f \in \mathcal{F}_{\mathcal{P}_K}(L)$. Since $\cos(f)$ is a compact element of L, we conclude from Propositions 3.3 and 4.9 that $f \in I$. Therefore, $\mathcal{F}_{\mathcal{P}_K}(L)$ is equal to the intersection of all free ideals $\mathcal{F}_{\mathcal{P}}(L)$. The rest is similar. \square

Definition 5.3. For every frame L, $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ is the family of all $f \in \mathcal{F}_{\mathcal{P}}(L)$ such that $\uparrow f(-\frac{1}{n}, \frac{1}{n})$, ordered by the relation of L, is a compact frame for every $n \in \mathbb{N}$.

The following proposition is a counterpart of (2) in $\mathcal{F}_{\mathcal{P}}^*(L)$.

Proposition 5.4. If B(L) is a sub- σ -frame of a zero-dimensional frame L, then $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ is equal to the intersection of all free maximal ideals of $\mathcal{F}_{\mathcal{P}}^*(L)$.

Proof. Let M be a free maximal ideal of $\mathcal{F}_{\mathcal{P}}^*(L)$ and $f \in \mathcal{F}_{\mathcal{P}_{\infty}}(L)$. Since for every $n \in \mathbb{N}$, $f(\mathbb{R} \setminus (-\frac{1}{n}, \frac{1}{n}))$ is a compact element of L, we conclude from Lemma 4.5 that for every $n \in \mathbb{N}$, $f(\mathbb{R} \setminus (-\frac{1}{n}, \frac{1}{n})) \in Coz[M]$, which from Propositions 3.3, 4.10 and 4.14 implies $f \in M$.

Now, let $f \notin \mathcal{F}_{\mathcal{P}_{\infty}}(L)$ be given. Then $z_n := |f|([\frac{1}{n}, -))$ is not compact for some $n \in \mathbb{N}$, which from Lemma 4.5 implies that there exists a free maximal ideal M of $\mathcal{F}_{\mathcal{P}}(L)$ such that $z_n \in Z(M)$ and so $|f| + M \ge 1/n$. Thus, there exists a nonnegative element $g \in \mathcal{F}_{\mathcal{P}}^*(L)$ such that $|f| - 1/n - g \in M$. Now, supposing M^* the unique maximal ideal in $\mathcal{F}_{\mathcal{P}}^*(L)$ containing M, we have $|f| - 1/n - g \in M^*$ and so $|f| - 1/n + M^* \ge 0$. Hence, $|f| \notin M^*$, so $f \notin M^*$ and clearly M^* is a fee maximal ideal of $\mathcal{F}_{\mathcal{P}}^*(L)$. \square

The following example shows that the above proposition does not hold if B(L) is not a sub- σ -frame of the zero-dimensional frame L.

Example 5.5. Let $X = \mathbb{N} \cup \{n + \frac{1}{m+1} : m, n \in \mathbb{N}\}$ be a topological space with relative topology of \mathbb{R} , and $L = \mathfrak{O}(X)$. It is clear that $\{1 + \frac{1}{n+1}\}$ is a complemented element of L for every $n \in \mathbb{N}$, and $\bigvee_{n \in \mathbb{N}} \{1 + \frac{1}{n+1}\}$ is not a complemented element of L, then B(L) is not sub- σ -frame of L. Also, since L is not compact, we conclude that $\mathcal{F}_{\mathcal{P}}L \neq \mathcal{F}_{\mathcal{P}\infty}L$.

The function $\alpha: \mathbb{R} \to L$ given by

$$\alpha(x) = \begin{cases} [n, n + \frac{1}{2}] \cap X & \text{if } x = \frac{1}{n} \text{ for some } n \in \mathbb{N} \\ \bot & \text{otherwise} \end{cases}$$

is a real-trail on L, and $f_{\alpha} \in \mathcal{F}_{\mathcal{P}\infty}L \setminus \mathcal{F}_{\mathcal{P}K}L$ is a unit element of $\mathcal{F}_{\mathcal{P}}L$. Therefore, $\mathcal{F}_{\mathcal{P}K}L$ is a proper ideal of $\mathcal{F}_{\mathcal{P}\infty}L$.

The function $\alpha_n : \mathbb{R} \to L$ given by

$$\alpha_n(x) = \begin{cases} a_n = [n, n + \frac{1}{2}] \cap X & \text{if } x = 1\\ a'_n = ([n, n + \frac{1}{2}] \cap X)' & \text{if } x = 0\\ \bot & \text{otherwise} \end{cases}$$

is a real-trail on L for any $n \in \mathbb{N}$, and $\cos(f_{\alpha_n}) = a_n$. Since $f_{\alpha_n} \in \mathcal{F}_{\mathcal{P}K}L$, and $\bigvee_{n \in \mathbb{N}} a_n = \top$, we conclude that $\mathcal{F}_{\mathcal{P}K}L$ is a free ideal of rings $\mathcal{F}_{\mathcal{P}\infty}L$, $\mathcal{F}_{\mathcal{P}}^*L$ and $\mathcal{F}_{\mathcal{P}}L$.

If M is a free maximal ideal of $\mathcal{F}_{\mathcal{P}}^*L$ such that $\mathcal{F}_{\mathcal{P}K}L\subseteq M$, then $\mathcal{F}_{\mathcal{P}\infty}\not\subseteq M$ and

$$\mathcal{F}_{\mathcal{P}\infty} \neq \bigcap \{M \colon M \text{ is a free maximal ideal of } \mathcal{F}_{\mathcal{P}}^*L\}.$$

For the proofs of the following corollaries, we need the following proposition which is proved in [24, Corollary 3.6].

Proposition 5.6. Let A be a commutative algebra over the rational numbers with unity. Let I be an ideal of A. Then an ideal D of I is a maximal ideal of I if and only if $D = M \cap I$ for some maximal ideal M in A, with $I \not\subseteq M$.

Corollary 5.7. If B(L) is a sub- σ -frame of a zero-dimensional frame L, then every ideal of $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ is fixed.

Proof. Let N be a free maximal ideal of $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$. Since $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ is an ideal of a commutative algebra over the rational numbers with unity $\mathcal{F}_{\mathcal{P}}^*(L)$, we conclude from Proposition 5.6 that there exists a maximal ideal M of $\mathcal{F}_{\mathcal{P}}^*(L)$ such that $\mathcal{F}_{\mathcal{P}_{\infty}}(L) \not\subseteq M$ and $N = M \cap \mathcal{F}_{\mathcal{P}_{\infty}}(L)$, which implies that M is free maximal ideal of $\mathcal{F}_{\mathcal{P}}^*(L)$ such tat $\mathcal{F}_{\mathcal{P}_{\infty}}(L) \not\subseteq M$, which is a contradiction by Proposition 5.4. Since every ideal of $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ is contained in a maximal ideal of $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$, we conclude that every ideal of $\mathcal{F}_{\mathcal{P}_{\infty}}(L)$ is fixed. \square

Corollary 5.8. If L is a zero-dimensional frame, then every ideal of $\mathcal{F}_{\mathcal{P}_K}(L)$ is fixed.

Proof. The proof is similar to the proof of Corollary 5.7. \Box

6. REAL RIESZ MAPS ON
$$\mathcal{F}_p(L)$$

We recall from [16, p. 142] that for every real compact space X, $\varphi \colon C(X) \to \mathbb{R}$ is a nonzero Riesz map if and only if there exists a unique $p \in X$ such that $\varphi(f) = f(p)$ for each $f \in C(X)$. In this section, we show that Proposition 6.2 is a counterpart of above result.

Lemma 6.1. The map $\cos : \mathcal{F}_{\mathcal{P}}(L) \to L$ given by $f \mapsto \cos(f)$ is a \mathbb{Q} -compatible bounded continuous cozero lattice-valued map.

Proof. By Proposition 2.1, the map coz is a cozero lattice-valued map.

For every $\diamond \in \{+, \cdot, \vee, \wedge\}$, $f, g \in \mathcal{F}_{\mathcal{P}}(L)$, and $r, s, w, z, p, q \in \mathbb{Q}$, if

$$< r, s > \diamond < w, z > \subseteq < p, q >$$

then we have

$$\cos(\delta_{rs}^{f}) \wedge \cos(\delta_{wz}^{g}) = \cos((f-r)^{+} \wedge (s-f)^{+}) \wedge \cos((g-w)^{+} \wedge (z-g)^{+})$$

$$= f(r,s) \wedge g(w,z)$$

$$\leq f \diamond g(p,q)$$

$$= \cos((f \diamond g - \mathbf{p})^{+}) \wedge (\mathbf{q} - (f \diamond g))^{+}$$

$$= \cos(\delta_{pg}^{f \diamond g}),$$

which implies that the lattice-valued map coz is \mathbb{Q} -compatible. For every $f \in \mathcal{F}_{\mathcal{P}}(L)$, we have

$$\bigvee_{p,q \in \mathbb{Q}} \cos(\delta_{pq}^f) = \bigvee_{p,q \in \mathbb{Q}} \cos((f - \mathbf{p})^+ \wedge (\mathbf{q} - f)^+) = \bigvee_{p,q \in \mathbb{Q}} f(p,q) = \top.$$

Hence, the lattice-valued map coz is bounded. Also, for any $p, q \in \mathbb{Q}$ and any $f \in \mathcal{F}_{\mathcal{P}}(L)$,

$$\begin{aligned} \cos\left(\delta_{pq}^{f}\right) &= \cos\left((f - \mathbf{p})^{+} \wedge (\mathbf{q} - f)^{+}\right) \\ &= f(p, q) \\ &= \bigvee_{\substack{r, s \in \mathbb{Q}, \\ p < r < s < q}} f(r, s) \\ &= \bigvee_{\substack{r, s \in \mathbb{Q}, \\ p < r < s < q}} \cos\left((f - \mathbf{r})^{+} \wedge (\mathbf{s} - f)^{+}\right) \\ &= \bigvee_{\substack{r, s \in \mathbb{Q}, \\ p < r < s < q}} \cos\left(\delta_{rs}^{f}\right), \end{aligned}$$

which implies that the lattice-valued map \cos is continuous. The proof is now complete. \Box

Proposition 6.2. Let B(L) be a sub- σ -frame of a zero-dimensional frame L, and let φ : $\mathcal{F}_{\mathcal{P}}(L) \to \mathbb{R}$ be a function such that $\varphi \neq \mathbf{0}$ and $\varphi(rf+gh) = r\varphi(f) + \varphi(g)\varphi(h)$ for every $r \in \mathbb{R}$ and $f, g, h \in \mathcal{F}_{\mathcal{P}}(L)$. If every maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$ is real, then there exists an element $p \in L$ such that $\varphi = \widetilde{p}_{\text{coz}}$.

Proof. By Lemma 6.1, $\operatorname{coz} \in F(\mathcal{F}_{\mathcal{P}}(L), L)$ is a \mathbb{Q} -compatible bounded continuous cozero lattice-valued map and φ is nonzero bounded Riesz map $\varphi \colon \mathcal{F}_{\mathcal{P}}(L) \to \mathbb{R}$. By Proposition 4.10, L is compact and, by Proposition 4.13, every maximal ideal of $\mathcal{F}_{\mathcal{P}}(L) = \mathcal{F}_{\mathcal{P}}^*(L)$ is fixed. Since φ is an f-ring epimorphism, we infer that $\overline{\varphi} \colon \frac{\mathcal{F}_{\mathcal{P}}(L)}{\ker(\varphi)} \to \mathbb{R}$ given by $f + \ker(\varphi) \mapsto \varphi(f)$ is an isomorphism. Since $\ker(\varphi)$ is a maximal ideal of $\mathcal{F}_{\mathcal{P}}(L)$, we conclude that there exists an element $p \in \Sigma L$ such that $\bigvee \operatorname{coz}(\ker(\varphi)) \leq p$, which from Proposition 2.3 implies that $\varphi = \widetilde{p_{\operatorname{coz}}} \cdot \square$

ACKOWLEDGMENTS

The authors thank the anoymous referees for their valuable comments and suggestions for improving the paper.

References

- S. K. Acharyya, G. Bhunia, and P.P. Ghosh, Finite frames, P-frames and basically disconnected frames, Algebra Univers., 72 No. 3 (2014) 209-224.
- [2] S. Afrooz and M. Namdari, $C_{\infty}(X)$ and related ideals, Real Anal. Exch., 36(1) (2010/2011) 45-54.
- [3] A.R. Aliabad, F. Azarpanah, and M. Namdari, Rings of continuous functions vanishing at infinity, Comment. Math. Univ. Carolin., 45 (2004) 519-533.
- [4] F. Azarpanah, Essential ideals in C(X), Period. Math. Hungar., 31(2) (1995) 105-112.
- [5] F. Azarpanah and R. Soundararajan, When the family of functions vanishing at infinity is an ideal of C(X), Rocky Mt. J. Math., **31** (2001) 1133-1140.
- [6] B. Banaschewski, The real numbers in pointfree topology, Textos de Matemática (Series B), 12 (1997) 1-96.
- [7] B. Banaschewski, Remarks concerning certain function rings in pointfree topology, Appl. Categor. Struct.,
 26 (2018) 873-881.
- [8] A. Bigard, K. Keimel, and S. Wolfenstein, Groups et anneaux reticules, Series: Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin Heidelberg, 1997.
- [9] T. Dube, Concerning P-frames, essential P-frames, and strongly zero-dimensional frames, Algebra Univers.,61 (2009) 115-138.
- [10] T. Dube, On the ideal of functions with compact support in pointfree function rings, Acta Math. Hungar., 129(3) (2010) 205-226.
- [11] M.M. Ebrahimi, A. Karimi Feizabadi and M. Mahmoudi, Pointfree spectra of riesz maps, Appl. Categ. Struct., 12(4) (2004) 379-409.
- [12] A.A. Estaji, M. Abedi, and A. Mahmoudi Darghadam, On self-injectivity of the f-ring $Frm(\mathcal{P}(\mathbb{R}), L)$, Math. Slovaca., **69**(5) (2019) 999-1008.
- [13] A.As. Estaji, E. Hashemi, and A.A. Estaji, On property (A) and socle of real-valued functions on a frame, Categ. Gen. Algebr. Struct. Appl., 8(1) (2018) 61-80.

- [14] A.A. Estaji, A. Karimi Feizabadi, and B. Emamverdi, Representation of real riesz maps on a strong f-ring by prime elements of a frame, Algebra, Univers. **79** (2018).
- [15] A.A. Estaji and A. Mahmoudi Darghadam, Rings of continuous functions vanishing at infinity on a frame, Quaest. Math., 42(9) (2019) 1141-1157.
- [16] L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, 1976.
- [17] J. Gutiérrez García, J. Picado, and A. Pultr, Notes on point-free real functions and sublocales, Categorical methods in algebra and topology, 167-200, Textos de Matemática, DMUC 46, Univ. Coimbra, 2014.
- [18] P.T. Johnstone, *Stone spaces*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1982.
- [19] A. Karimi Feizabadi, A.A. Estaji, and B. Emamverdi, RL-valued f-ring homomorphisms and lattice-valued maps, Categ. Gen. Algebr. Struct. Appl., 8 (2017) 141-163.
- [20] A. Karimi Feizabadi, A.A. Estaji, and M. Zarghani, The ring of real-valued functions on a frame, Categ. Gen. Algebr. Struct. Appl., 5(1) (2016) 85-102.
- [21] A. Karimi Feizabadi and M.M. Ebrahimi, Pointfree prime representation of real Riesz maps, Algebra Univers., 54(3) (2005) 291-299.
- [22] C.W. Kohls, The space of prime ideals of a ring, Fund. Math., 45 (1957) 17-27.
- [23] J. Picado and A. Pultr, Frames and locales: Topology without points, Frontiers in Mathematics, Springer Basel, 2012.
- [24] D. Rudd, On isomorphisms between ideals in rings of continuous functions, Trans. Amer. Math. Soc., 159 (1971) 335-353.
- [25] M. Zarghani and A. Karimi Feizabadi, Zero elements in lattice theory, Extended Abstracts of the 25th Iranian Algebra Seminar, Hakim Sabzevari University, Sabzevar, Iran (July 20-21, 2016).

Ali Akbar Estaji

Faculty of Mathematics and Computer Sciences,

Hakim Sabzevari University,

Sabzevar, Iran.

aaestaji@hsu.ac.ir

Ahmad Mahmoudi Darghadam

Faculty of Mathematics and Computer Sciences,

Hakim Sabzevari University,

Sabzevar, Iran.

m.darghadam@yahoo.com