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Abstract. Let FP(L) (F∗
P(L)) be the f -rings of all (bounded) frame maps from P(R) to

a frame L. FP∞(L) is the family of all f ∈ FP(L) such that ↑f(− 1
n
, 1
n
) is compact for any

n ∈ N and the subring FPK (L) is the family of all f ∈ FP(L) such that coz (f) is compact.

We introduce and study the concept of real ideals in FP(L) and F∗
P(L). We show that every

maximal ideal of F∗
P(L) is real, and also we study the relation between the conditions “L

is compact” and “every maximal ideal of FP(L) is real”. We prove that for every nonzero

real Riesz map φ : FP(L) → R, there is an element p in ΣL such that φ = p̃ coz if L is a

zero-dimensional frame for which B(L) is a sub-σ-frame of L and every maximal ideal of

FP(L) is real. We show that FP∞(L) is equal to the intersection of all free maximal ideals of

F∗
P(L) if B(L) is a sub-σ-frame of a zero-dimensional frame L and also, FPK (L) is equal to

the intersection of all free ideals FP(L) (resp., F∗
P(L)) if L is a zero-dimensional frame. Also,

we study free ideals and fixed ideals of FP∞(L) and FPK (L).
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1. Introduction

We state from the start that, throughout, by the term ring we mean a commutative ring

with identity and a subring of a commutative ring with identity does not imply the identity

must belong to the subring.

The ring of all real-valued continuous functions on a frame L is denoted by RL (see [6]

for details). In [20] the authors introduced FP(L) := Frm(P(R), L) and showed that RX ∼=
FP(P(X)). Also they proved that FP(L) is isomorphic to a sub-f -ring of RL and showed that

the inclusion may be strict.

Let C(X,Rd) denote the set of continuous functions from a space X into the discrete space

of real-numbers Rd. It is known that C(X,Rd) ≤ C(X). If X is discrete, then

C(X,Rd) = C(X) = RX ∼= FP(P(X)).

In this manner, FP(L) is the generalization of the f -ring C(X,Rd).

In [7] an element α ∈ RL is called locally constant if there exists a partition P of L, meaning

P is a cover of L and its elements are pairwise disjoint, such that α|a is constant for each a ∈ P ,

where α|a : L(R) → ↓a given by α|a(v) = α(v) ∧ a for every v ∈ L(R). The set of all locally

constant elements of RL is denoted by SL. In [7], Banaschewski showed that FP(L) ∼= SL as

f -rings.

For any completely regular Hausdorff space X, C∞(X), the subring of all functions C(X)

which vanish at infinity, was introduced by Kohls in [22] (also, see [2, 5, 4, 3]). Also, R∞L,

the ring of real continuous functions vanishing at infinity on a frame L, was first discussed by

Dube [10] (also, see [1, 15, 17]).

In this paper, we introduce the subring FP∞(L) which is the family of all f ∈ FP(L)
such that ↑f(− 1

n ,
1
n) is compact for any n ∈ N and the subring FPK

(L) which is the family

of all f ∈ FP(L) such that coz (f) is compact. In Section 3, we show that every ideal of

FP(L) is an absolutely convex z-ideal and FP (L)
I is totally ordered ring if and only if I is a

prime ideal of FP(L). In Section 4, we introduced real ideals in FP(L) (resp., F∗P(L)) and

we show that a maximal ideal P of FP(L) (resp., F∗P(L)) is real if and only if FP (L)
P (resp.,

F∗
P (L)
P ) is archimedean (see Proposition 4.2). Proposition 4.10 contains a complete description

of the residue class fields of F∗P(L) and also, shows a relation between the conditions “L

is compact” and “every maximal ideal of FP(L) is real”. In Proposition 4.13, we give a

characterization of compact frames in terms of fixed ideals of FP(L). In Proposition 4.14,

we give a characterization of real maximal ideals of FP(L) (resp., F∗P(L)) in terms of the

countable meet property. In Section 5, we show that for every zero-dimensional frame L,

FPK
(L) is equal to the intersection of all free ideals of FP(L) (resp., F∗P(L)) (see Proposition

5.2) and also every ideal of FPK
(L) is fixed (see Corollary 5.8). Next we prove that if B(L) is
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a sub-σ-frame of a zero-dimensional frame L, then FP∞(L) is equal to the intersection of all

free maximal ideals of F∗P(L) and also every ideal of FP∞(L) is fixed (see Proposition 5.4 and

Corollary 5.7). In Section 6, we study nonzero bounded Riesz maps on FP(L).

2. Preliminaries

We begin by briefly recounting the familiar notions involved here. For this, we recall some

necessary definitions and results on frames, C(X), FP(L), real-trail and f -rings. Interested

readers are referred to standard textbook on frames as [23], on f -rings such as [8], and on

C(X) such as [16].

Throughout this paper, L will represent a frame. The pseudocomplement of an element a of

L is denoted by a∗ and an element a in L is said to be complemented if a∨ a∗ = ⊤ and in this

case a′ = a∗. Set B(L) := { a ∈ L : a is complemented }, the sublattice of all complemented

elements of L. We easily see that B(L) is a Boolean algebra. A frame L is zero-dimensional

if it is join-generated by B(L).

Regarding the f -ring FP(L) (F∗P(L)) of all (bounded) frame maps from P(R) to a frame L,

we use the notation of [20]. In [12], it is shown that for any frame L there is a zero-dimensional

frame M such that FPL and FPM are isomorphic.

The properties of the zero map z : FP(L) → L, given by z(f) = f({0}) that we shall

frequently use are listed in the following proposition:

Proposition 2.1. [25] For every f, g ∈ FP(L), we have

(1) for every n ∈ N, z(f) = z(−f) = z(|f |) = z(fn),

(2) z(fg) = z(f) ∨ z(g),

(3) z(f + g) ≥ z(f) ∧ z(g),

(4) z(f + g) = z(f) ∧ z(g), while f, g ≥ 0,

(5) z(f) = ⊤ if and only if f = 0, and

(6) z(f) = ⊥ if and only if f is a unit element of FP(L).

For every f ∈ FP(L) and every A ⊆ FP(L), we put coz (f) := f(R \
{0}), Coz (A) := { coz (f) : f ∈ A } and Z(A) := { z(f) : f ∈ A }. Then

coz (f) = (z(f))′ = (z(f))∗, which implies that for every f, g ∈ FP(L), z(g) ≤
z(f) if and only if coz (f) ≤ coz (g) and this is equivalent to the fact that

coz(f) ≺≺Coz (L) coz(g).
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On the other hand, Estaji el at. in [13] proved that for every complemented a in L, the

map fa : P (R) → L given by

fa(X) =


⊤ if 0, 1 ∈ X

a′ if 0 ∈ X and 1 ̸∈ X

a if 0 ̸∈ X and 1 ∈ X

⊥ if 0 ̸∈ X and 1 ̸∈ X,

belongs to FP(L), f2
a = fa, z(fa) = a′, coz (fa) = a and for every f ∈ FP(L) and every

X ∈ P (R),

ffa(X) =

a′ ∨ f(X) if 0 ∈ X,

a ∧ f(X) if 0 ̸∈ X.

Therefore,

B(L) = Z(FP(L)) = Coz (FP(L)) = {x ∈ L : x ∈ Im(f) for some f ∈ FP(L) }.

An real-trail on L is a function t : R −→ L such that
∨

x∈R t(x) = ⊤ and t(x)∧ t(y) = ⊥ for

every x, y ∈ R with x ̸= y. For every real-trail t on a frame L,

φt : P(R) −→ L

X 7−→
∨

x∈X t(x)

is a frame map. Throughout this paper, this notation will be used. In [12], it is shown that

for every frame L, there is a zero-dimensional frame M such that FP(L) ∼= FP(M) (see [7]).

We recall from [19, 14] that for every f -ring A with bounded inversion, F (A,L) is the set

of all functions from A to L and for every element a of an f -ring A and every r, s ∈ Q,

δars := (a− r)+ ∧ (s− a)+

is nominated as interval projection and a lattice-valued map c ∈ F (A,L) is called

(1) cozero lattice-valued map if it satisfies

(c1) c(0) = ⊥,

(c2) If x ∈ A is a unit, then c(x) = ⊤,

(c3) If x, y ≥ 0, then c(x ∨ y) = c(x) ∨ c(y),

(c4) If x, y ≥ 0, then c(x ∧ y) = c(x) ∧ c(y).

(2) continuous, if c(δxpq) =
∨

r,s∈Q,
p<r<s<q

c(δxrs) for any p, q ∈ Q and any x ∈ A.

(3) bounded if
∨

p,q∈Q c(δapq) = ⊤, for all a ∈ A.

(4) Q-compatible if for every ⋄ ∈ {+, ·,∨,∧}, a, b ∈ A, and r, s, w, z, p, q ∈ Q,

< r, s > ⋄ < w, z >⊆< p, q >⇒ c(δars) ∧ c(δbwz) ≤ c(δa⋄bpq ).

We also will need the following propositions which appear in [14]. They are counterparts of

Lemmas 3.1 and 3.5 in [21].
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Proposition 2.2. Let c ∈ F (A,L) be a bounded cozero lattice-valued map, and let

Lc(p, a) = {s ∈ Q | r < s ⇒ c(δars) ≤ p for all r ∈ Q},

and

Uc(p, a) = {r ∈ Q | r < s ⇒ c(δars) ≤ p for all s ∈ Q}

for every (p, a) ∈ ΣL×A. Then (Lc(p, a), Uc(p, a)) is a Dedekind cut for a real number which

is denoted by p̃c(a) for any (p, a) ∈ ΣL×A.

Proposition 2.3. Let c ∈ F (A,L) be a Q-compatible bounded continuous cozero lattice-valued

map. For each nonzero bounded Riesz map ϕ : A → R, if p ∈ ΣL with
∨

c
(
ker(ϕ)

)
≤ p, then

ϕ = p̃c.

Let A be an ordered ring. An A-module M is called an ordered module if x, y ≥ 0 and

a ≥ 0 imply that x + y ≥ 0 and ax ≥ 0; and it is called an ℓ-module if it is a lattice with its

order; an f -module if for every a ≥ 0 with a ∈ A, x, y ∈ M , a(x ∧ y) = ax ∧ ay. An ℓ-module

over Q is called a Riesz space; note that every Riesz space is an f -module. A submodule I

of M is called an ℓ-ideal if |a| ≤ |b| and b ∈ I imply a ∈ I, where |a| = a ∨ (−a). A module

homomorphism which preserves the lattice operations is called ℓ-module homomorphism. The

ℓ-module homomorphisms between Riesz spaces are called Riesz maps. For more information

see [11, 18].

3. Residue class ring of FP(L) or F∗P(L) modulo an ideal

The notion of restriction of α ∈ R(L) to some a ∈ L is introduced by Banaschewski in

[6] corresponding to the topological notion of restricting continuous maps on a space to some

open subspace: α|a is the homomorphism L(R) → ↓a such that α|a(p, q) = α(p, q)∧a, that is,

the composite of α with the quotient map L → ↓a which takes x to x∧ a. Similarly, we define

f |a : P(R) → ↓a by f |a(X) = f(X) ∧ a for every a ∈ L and every f ∈ FP(L).

Remark 3.1. For every f ∈ FP(L), f ∈ F∗P(L) if and only if f | coz (f) ∈ F∗P(↓ coz (f)).

If X is a completely regular topological space and f, g ∈ C(X) such that z(g) ⊆ int(z(f)),

then there exists an element h ∈ C(X) such that f = hg. Also if coz (f) is compact then

there exists an h ∈ C∗(X), such that f = hg see [16]. If L is a completely regular frame and

α, β ∈ RL such that coz (α) ≺≺ coz (β) there exists an element γ ∈ RL such that α = γβ (see

[9]). These facts lead us to the following result.

Lemma 3.2. Let f, g ∈ FP(L) such that z(g) ≤ z(f), then there exists an element h ∈ FP(L)
such that f = hg. Also if coz (f) is compact, then there exists an element h ∈ F∗P(L) such

that f = hg.
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Proof. We define the real-trail t : R → L on the frame L by

t(x) =

z(g) if x = 0

g({ 1
x}) if x ̸= 0,

which implies that

gφt({x}) =


z(g) if x = 0

coz (g) if x = 1

⊥ if x ̸= 1, 0.

Consider h := fφt. Then coz (h) = coz (f), and for every x ∈ R,

hg({x}) = fφtg({x})

=
∨

{f({y}) ∧ φtg({y′}) : yy′ = x}

=


z(f) if x = 0

f({x}) if x ̸= 0

= f({x}),

which implies that f = hg. Also, if coz (f) is compact, then h| coz (h) is bounded and, by

Remark 3.1, h ∈ F∗P(L).

As an immediate consequence of Lemma 3.2, we can state the following proposition.

Proposition 3.3. Let I be an ideal of FP(L) (resp., F∗P(L)). For every f, g ∈ FP(L) (resp.,

f, g ∈ F∗P(L)), if z(f) ≤ z(g) and f ∈ I, then g ∈ I.

Let a ∈ L and f ∈ FP(L), we say f on a is nonpositive (resp., nonnegative) if f |a ≤ 0

(resp., f |a ≥ 0) and equivalently, if f((−∞, 0]) ≥ a (resp., f([0,+∞)) ≥ a). Also, we say f

on a does not change sign if f |a ≤ 0 or f |a ≥ 0. The next proposition clarifies to some extent

the relation between prime ideals and zero elements.

Proposition 3.4. Let I be a proper ideal of FP(L). Then the following statements are equiv-

alent.

(1) I is a prime ideal.

(2) I contains a prime ideal.

(3) For every f, g ∈ FP(L), if fg = 0, then f ∈ I or g ∈ I.

(4) For every f ∈ FP(L), there is a zero element belonging to Z[I] on which f does not

change sign.

(5) For every f ∈ FP(L), there is an element g belonging to I such that f(0,+∞) ≤ coz (g)

or f(−∞, 0) ≤ coz (g).



Alg. Struc. Appl. Vol. 7 No. 2 (2020) 93-113. 99

(6) I is a maximal ideal.

Proof. (1) ⇒ (2) ⇒ (3). Trivial.

(3) ⇒ (4). Consider f ∈ FP(L). Since (f ∨ 0)(f ∧ 0) = 0, we conclude that f ∨ 0 ∈ I or

f ∧ 0 ∈ I. If f ∨ 0 ∈ I, then f(0,+∞) ≤ (f ∨ 0)(0,+∞) = coz (f ∨ 0), which implies that

f(−∞, 0] ≥ z(f ∨ 0), that is f |z(f ∨ 0) ≤ 0. Similarly, if f ∧ 0 ∈ I, then f |z(f ∧ 0) ≥ 0.

(4) ⇒ (5). Let f ∈ FP(L) be given. Then there is an element g ∈ I such that f |z(g) ≤ 0 or

f |z(g) ≥ 0, which implies that z(g) ≤ f(−∞, 0] or z(g) ≤ f [0,+∞), and so f(0,+∞) ≤ coz (g)

or f(−∞, 0) ≤ coz (g).

(5) ⇒ (1). Let f, g ∈ FP(L) with fg ∈ I be given. Then for the element h = |f | − |g|
in FP(L), by hypothesis, there exists an element α ∈ I such that h(0,+∞) ≤ coz (α) or

h(−∞, 0) ≤ coz (α). If h(0,+∞) ≤ coz (α) we have

coz (|f |) = (h+ |g|)(0,+∞) ≤ h(0,+∞) ∨ |g|(0,+∞) ≤ coz (α) ∨ |g|(0,+∞) = coz (|α| ∨ |g|).

Therefore,

coz (f) = coz (|f |) ∧ coz (|α| ∨ |g|) = coz (|fα|+ |fg|) ∈ coz (I),

which implies that f ∈ I. We note similarly that if h(−∞, 0) ≤ coz (α), then g ∈ I. Hence, I

is a prime ideal.

(1) ⇔ (6). By Proposition 3.3 in [12], it is clear, since FP(L) is a regular ring.

Remark 3.5. We recall that an ideal I of an f -ring A is an ℓ-ideal if |x| ≤ |y| and y ∈ I imply

x ∈ I. Hence, by Proposition 3.3, every ideal FP(L) is an ℓ-ideal and also if I is an ideal of

FP(L) then I is a convex ideal, that is, if whenever 0 ≤ x ≤ y, and y ∈ I, then x ∈ I. Hence,

by Theorem 5.2 in [16], FP (L)
I is a partially ordered ring, according to the definition:

f + I ≥ 0 if there exists an element g ∈ FP(L) such that g ≥ 0 and f − g ∈ I.

Throughout this paper, this notation will be used. Also, by Theorem 5.3 in [16], the following

statements hold for every ideal I of FP(L) and every f, g ∈ FP(L).

(1) f ∈ I if and only if |f | ∈ I.

(2) f, g ∈ I implies f ∨ g ∈ I.

(3) (f ∨ g) + I = (f + I) ∨ (g + I).

(4) f + I ≥ 0 if and only if f − |f | ∈ I.

The above results are true for F∗P(L).

To establish that A is totally ordered, it is enough to show that every element is comparable

with 0. Therefore, in the following proposition, we have determined the elements of FP (L)
I

which are the nonnegative elements.
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Proposition 3.6. Let I be a proper ideal of FP(L). Then for every f ∈ FP(L), the following

statements hold.

(1) f + I ≥ 0 if and only if f |a is nonnegative on at least one a of Z[I].

(2) If f(0,+∞) ≥ a on at least one a of Z[I], then f + I > 0, and if I is maximal, the

converse holds as well.

Proof. (1). Necessity. By Remark 3.5, z(f − |f |) = f([0,+∞)) ∈ Z[I]. Therefore, f and |f |
have the same sign on z(f − |f |), and hence f is nonnegative on z(f − |f |).

Sufficiency. Let f |z(g) ≥ 0 for some g ∈ I, then z(|f | − f) = f([0,+∞)) ≥ z(g) for some

g ∈ I. By Lemma 3.2, there exists an element k ∈ FP(L) such that |f |− f = gk ∈ I. We infer

that f + I ≥ 0.

(2) Let f ∈ FP(L) and f(0,+∞) ≥ a for some a ∈ Z[I], then z(f) ∧ a = ⊥, and hence

f ̸∈ I. By the first statement, f + I > 0.

Let I be a maximal ideal and f + I > 0. Then, by the first statement, there exists an

element a ∈ Z[I] such that f |a ≥ 0. Since f ̸∈ I, we conclude that there exists an element

b ∈ Z[I] such that b ∧ z(f) = ⊥, which implies that b ∧ a ∈ Z[I] and f(0,+∞) ≥ a ∧ b.

The following example shows that the maximal condition on I is necessary in the inverse of

the second statement of the above proposition.

Example 3.7. Suppose that I and J are ideals of FP(L) such that I ( J . If f ∈ J \ I, then
I + f2 > 0. Since z(f) = z(f2) ∈ Z[J ], we infer that z(f) ∧ a ̸= ⊥, for any a ∈ Z[J ] ⊇ Z[I],

which implies that z(f)∧ a ̸= ⊥, for any a ∈ Z[I]. Therefore, there is not an element a ∈ Z[I]

such that f(0,+∞) ≥ a.

The relation between prime ideals of FP(L) and the residue class fields of FP(L) is clarified
by the next proposition.

Proposition 3.8. For every proper ideal I of FP(L), FP (L)
I is a totally ordered ring if and

only if I is a prime ideal.

Proof. Necessity. Consider f ∈ FP(L). Since FP (L)
I is a totally ordered ring, we conclude that

f + I ≤ 0 or f + I ≥ 0, which by the first statement implies that there is a zero element

belonging to Z[I] on which f does not change sign, and so, by Proposition 3.4, I is a prime

ideal.

Sufficiency. Consider f + I and g + I are two elements of FP (L)
I . By Proposition 3.4, there

is a zero element belonging to Z[I] on which f − g does not change sign, which implies that

f + I ≤ g + I or f + I ≥ g + I. Therefore, FP (L)
I is totally ordered ring.
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It is well known that a subring R′ of a partially ordered ring R is called an absolutely convex

if f ∈ R′ and |g| ≤ |f |, then g ∈ R′ for every f, g ∈ R. It is clear that F∗P(L) is an absolutely

convex subring of FP(L).

Proposition 3.9. Let P be an ideal of an absolutely convex subring R of FP(L). If P is a

semiprime ideal of R, then P is an absolutely convex ideal of R.

Proof. Let P be a prime ideal of R, and let (f, g) ∈ R× P with |f | ≤ |g| be given. We define

the real-trail t : R → L on the frame L by

t(x) =

z(f) if x = 0∨
{ f({y}) ∧ g({z}) : y, z ∈ R \ {0}, y2

z = x } if x ̸= 0.

Then f2 = gφt ∈ P , which implies that f ∈ P .

4. Real ideals in FP(L)

For every proper ideal P of FP(L), it is clear that θ : R → FP (L)
P given by r 7→ r + P is a

monomorphism, which implies that FP (L)
P has a copy of R. This fact leads to the following

definition.

Definition 4.1. Let R be a subring of FP(L). A maximal ideal P of R is called real if R
P
∼= R,

otherwise it is called hyper-real.

We recall from [16] that a totally ordered field F is said to be archimedean if for every

element a ∈ F , there exists n ∈ N such that n ≥ a. We will also need the following result

which appears in [16, Theorem 0.21].

Proposition 4.2. A maximal ideal P of FP(L) (resp., F∗P(L)) is real if and only if FP (L)
P

(resp.,
F∗

P (L)
P ) is archimedean.

We recall from [16] that a nonarchimedean field is characterized (among all totally ordered

fields) by the presence of infinitely large elements, that is, elements a such that a > n for every

n ∈ N.
The following proposition relates unbounded functions of FP(L) with infinitely large ele-

ments modulo maximal ideals.

Proposition 4.3. Let M be a maximal ideal of FP(L). Then for every f ∈ FP(L), the

following statements are equivalent.

(1) |f +M | is an infinitely large element of FP (L)
M .

(2) f |a is unbounded for every a ∈ Z[M ].

(3) |f |[n,+∞) ∈ Z[M ] for every n ∈ N.
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Proof. Let n ∈ N be given. Then, by Proposition 3.6, |f +M | ≥ n if and only if there exists

an element a ∈ Z[M ] such that |f ||a ≥ n if and only if |f |[n,+∞) is greater than or equal to

a member of Z[M ] if and only if |f |[n,+∞) ∈ Z[M ].

Definition 4.4. An ideal I of a subring of FP(L) is fixed if
∨

f∈I coz (f) ̸= ⊤ and it is a free

ideal if
∨

f∈I coz (f) = ⊤.

The following proposition relates compact elements of L with proper free ideals of FP(L)
or F∗P(L).

Lemma 4.5. Let L be a zero-dimensional frame and a ∈ L. Then the following statements

hold.

(1) If a is a compact element of L, then a ∈ B(L).

(2) a is a compact element of L if and only if a ∈ Coz[I] \ Z[I] for every proper free ideal

I of FP(L).
(3) a is a compact element of L if and only if a ∈ Coz[I] \ Z[I] for every proper free ideal

I of F∗P(L).
(4) a is a compact element of L if and only if a ∈ Coz(M) for every free maximal ideal M

of FP(L).

Proof. (1). It is clear.

(2). Necessity. By the first statement, a = coz (fa). Then

a = coz (fa) ∧ ⊤ = coz (fa) ∧
∨
f∈I

coz (f) =
∨
f∈I

(
coz (fa) ∧ coz (f)

)
=

∨
f∈I

coz (faf),

which implies that there are f1, f2, . . . , fn ∈ I such that

a =
n∨

i=1

coz (fafi) = coz
( n∑

i=1

(fafi)
2
)
.

The proof is now complete, because
∑n

i=1(fafi)
2 ∈ I. The rest is obvious.

Sufficiency. Let a be a noncompact element of L. Therefore, there is a subset S of L such

that
∨

S = a and
∨

F ̸= a for every finite subset F of S. We assume that I is the ideal of

FP(L) generated by

{fa′} ∪ {f ∈ FP(L) : coz (f) ≤
∨

F for some finite subset F of S }.

Then I is a proper free ideal and a ̸∈ coz [I], which is a contradiction. The proof is now

complete.

(3). The proof is similar to the proof of the second statement.
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By the following proposition, we show that whenever B(L) is a sub-σ-frame of L, then the

equality FP(L) = F∗P(L) implies that L is compact.

Proposition 4.6. The following statements hold for every zero-dimensional frame L.

(1) If L is compact, then FP(L) = F∗P(L).
(2) If B(L) is a sub-σ-frame of L and FP(L) = F∗P(L), then L is compact.

Proof. (1). It is evident.

(2). Let L be not compact, and let S ⊆ L such that
∨

S = ⊤ and
∨

F ̸= ⊤ for every finite

subset F of S. For every a ∈ S, there is a subset Ca of B(L) such that a =
∨

Ca. Consider

C :=
∪

a∈ACa. Then
∨

F ̸= ⊤ for every finite subset F of C. Therefore, without losing

generality we may assume that
∨
(C \ {c}) ̸= ⊤ for every c ∈ C. Let B := {cn+1 ∈ C : n ∈ N}

be an infinite countable subset of C. Since B(L) is a σ-frame, we conclude that
∨

B has a

complement in L, say c1. We put bn :=
∨n

i=1 ci for every n ∈ N, and define the real-trail

t : R → L on L by

t(x) =


b1 if x = 1

bx ∧ b′x−1 if x ∈ N \ {1}

⊥ otherwise.

It is clear that φt ∈ FP(L) \ F∗P(L), which is a contradiction.

Here, we show by an example that the condition “B(L) is a sub-σ-frame of L” is necessary

in Proposition 4.6.

Example 4.7. We recall from [16] that the set of all ordinals less than the first uncountable

ordinal is denoted by W (ω1), where ω1 is the first uncountable ordinal. The topology on

W (ω1) is the interval topology. The space W (ω1) is pseudocompact but not compact, which

implies that FP
(
W (ω1)

)
= F∗P(W

(
ω1)

)
.

Remark 4.8. Let a be an element of a frame L. If x ∈ B(L) ∩ ↓a, then x ∧ (x′ ∧ a) = ⊥ and

x∨ (x′ ∧ a) = a. Hence, B(L)∩ ↓a ⊆ B(↓a). Therefore, if L is a zero-dimensional frame, then

↓a is a zero-dimensional frame. Also, if a ∈ B(L), then B(L) ∩ ↓a = B(↓a).

We recall that a subsete F of L is called a zFP
-filter on L if the following statements hold:

(1) 0 ̸∈ F ,

(2) for every a, b ∈ F , there exists a c ∈ F that c ≤ a ∧ b, and

(3) if b ∈ F , a ∈ L, and b ≤ a, then a ∈ F .

It is evident that F ⊆ L is a zFP
-filter (resp., zFP

-ultrafilter) if and only if a proper filter (resp.,

an ultrafilter) of B(L). Therefore, a subsete I of FP(L) is a proper ideal (resp., maximal ideal)
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of FP(L) if and only if the family z[I] = {z(f) | f ∈ I} is a filter (resp., ultrafilter) on B(L).

Also, a subsete F of B(L) is a proper filter (resp., an ultrafilter) of B(L) if and only if the

family z−1[F ] = {f | z(f) ∈ F} is a proper ideal (resp., maximal ideal) of FP(L).

Proposition 4.9. The following statements hold for every zero-dimensional frame L and every

f ∈ FP(L).

(1) f ∈ FP(L) \ F∗P(L) if and only if there exists a maximal ideal M of FP(L) such that

|f +M | is an infinitely large element of FP (L)
M and M is not real.

(2) Suppose that a ∈ B(L) such that B(↓a) is a sub-σ-frame of ↓a. Then a is a compact

element of L if and only if a ̸∈ Z[I] for every proper free ideal I in FP(L).
(3) |f +M | is infinitely large for every free maximal ideal M in FP(L) if and only if for

every a ∈ B(L), a is non-compact element of L implies f |a ∈ FP(↓a) \ F∗P(↓a).

Proof. (1) Necessity. Let f ∈ FP(L) \ F∗P(L) be given. We put an := |f |[n,+∞) for any

n ∈ N. Since for every finite subset S of N, we have ⊥ ̸=
∧

i∈S ai ∈ B(L), we conclude that

there exists an ultrafilter F of B(L) containing {an : n ∈ N}. Hence, M := z←[F ] is a maximal

ideal of FP(L) and, by Proposition 4.3, |f + M | is an infinitely large element of FP (L)
M , and

also, by Proposition 4.2, M is not real.

Sufficiency. It is obvious.

(2) Necessity. By Lemma 4.5, it is clear.

Sufficiency. Let a ∈ B(L) be not a compact element of L, then ↓a is not a compact frame,

which from Proposition 4.6 and Remark 4.8 imply that there is an element f ∈ FP(↓a)\F∗P(↓a).
We define the real-trail t : R → L on the frame L by

t(x) =



f({x− 1}) if x > 1

z(f) ∨ a′ if x = 0

f({x+ 1}) if x < −1

⊥ if 0 < x ≤ 1 or −1 ≤ x < 0.

Hence, φt ∈ FP(L) \ F∗P(L). For any n ∈ N, we put an := |φt|([n,−)). Now, similar to the

proof of the first statement, there exists a maximal ideal M of FP(L) such that it is not real

and {an : n ∈ N} ⊆ Z[M ]. Therefore, M is a free maximal ideal M of FP(L) and a ∈ Z[M ],

which is a contradiction.

(3) Necessity. Let a ∈ B(L) be a non-compact element of L. Then, by Lemma 4.5, there

exists a proper free ideal I of FP(L) such that a ∈ Coz[I] \ Z[I]. Let M be a free maximal

ideal of FP(L) with I ⊆ M . If a′ ∈ Z[M ], then ⊥ = a ∧ a′ ∈ Z[M ], which is a contradiction

and this implies that a ∈ Z[M ]. Therefore, by Proposition 4.3, f |a ∈ FP(↓a) \ F∗P(↓a).
Sufficiency. We argue by contradiction. Let us assume that there exists a free maximal ideal

M of FP(L) such that |f+M | is not an infinitely large element of FP (L)
M . Then, by Proposition
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4.3, there exists an element a ∈ Z[M ] such that f |a is bounded. The hypothesis now implies

that a ∈ B(L) is a compact element of L, and so, by Lemma 4.5, a ∈ Coz[M ] \ Z[M ], which

is a contradiction.

The following proposition shows the connection between real maximal ideals and compact

frames.

Proposition 4.10. The following statements hold for every zero-dimensional frame L.

(1) Every maximal ideal of F∗P(L) is real.

(2) If L is compact, then every maximal ideal of FP(L) is real.

(3) If every maximal ideal of FP(L) is real and B(L) is a sub-σ-frame of L, then L is

compact.

Proof. (1). If M is a maximal ideal of F∗P(L) and f ∈ F∗P(L), then |f + M | ≤ n for some

n ∈ N, which from Proposition 4.2 implies that M is real.

(2). By Proposition 4.6 and by the first statement, it is evident.

(3). By Proposition 4.6, there exists an element f ∈ FP(L) \ F∗P(L). By Proposition 4.9,

there exists a maximal ideal M of FP(L) such that |f +M | is an infinitely large element of
FP (L)
M and M is not real, which is a contradiction.

Example 4.11. We recall from [16] that the set of all ordinals less than the first uncountable

ordinal is denoted by W (ω1), where ω1 is the first uncountable ordinal. The topology on

W (ω1) is the interval topology. W (ω1) is pseudocompact but not compact, which implies that

FP
(
W (ω1)

)
= F∗P(W

(
ω1)

)
.

Example 4.12. Let a, b ∈ R \ Q with a < b and X := {r ∈ Q : a < r < b} be given. If

L := {O ∩X : O ∈ O(R)}, then the following statements hold.

(1) L is a zero-dimensional frame.

(2) B(L) is not a sub-σ-frame of L.

(3) L is not a compact frame.

(4) Every maximal ideal of FP(L) is real.

The next result is a new characterization of compact frames in terms of fixed ideals of

FP(L).

Proposition 4.13. The following statements are equivalent for every zero-dimensional frame

L.

(1) L is compact.

(2) Every proper ideal of FP(L) (F∗p (L)) is fixed.
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(3) Every maximal ideal of FP(L) (F∗p (L)) is fixed.

Proof. (1) ⇒ (2). Let I be a free proper ideal of FP(L). Since, by Lemma 4.5, ⊤ ∈ coz (I),

we conclude that I = FP(L), which is a contradiction.

(2) ⇒ (3). It is clear.

(3) ⇒ (1). Let {aλ}λ∈Λ ⊆ L such that ⊤ =
∨

λ∈Λ aλ. Without loss of generality, we can

assume that {aλ}λ∈Λ ⊆ B(L). It is clear that I =< faλ : λ ∈ Λ > is an ideal of FP(L). If

I ̸= FP(L), then there exists a maximal ideal M such that I ⊆ M , and so

⊤ =
∨
λ∈Λ

aλ =
∨

Coz(I) ≤
∨

Coz(M),

which is a contradiction. Therefore, I = FP(L) and there exists a finite subset Λ′ of Λ such

that ⊤ = coz (1) =
∨

λ∈Λ′ aλ. The proof is now complete

We recall that a subset C of a frame L is said to have the countable meet property provided

that the meet of any countable number of members of C is not the bottom.

We recall from [16] that a nonarchimedean field is characterized (among all totally ordered

fields) by the presence of infinitely small elements, that is, elements a such that a < 1
n for

every n ∈ N.
The next result is a characterization of real maximal ideals of FP(L).

Proposition 4.14. Let M be a maximal ideal of FP(L) (resp., F∗P(L)). Consider the following
conditions on M .

(1) M is real.

(2) Z[M ] is closed under countable meet.

(3) Z[M ] has the countable meet property.

Then (2)⇒(3)⇒(1) and if B(L) is a sub-σ-frame of a zero-dimensional frame L, then three

conditions are equivalent.

Proof. (2) ⇒ (3). It is clear, because ⊥ ̸∈ Z[M ].

(3) ⇒ (1). If M is not real, then there is an element f ∈ FP(L) such that f+M is infinitely

large, which, by Proposition 4.3, implies that zn := |f |[n,+∞) ∈ Z[M ] for every n ∈ N. It is

clear that
∧

n∈N zn = ⊥, which is a contradiction.

(1) ⇒ (2). Let B(L) be a sub-σ-frame of a zero-dimensional frame L. Consider {zn}n∈N in

Z[M ] with z :=
∧

n∈N zn ̸∈ Z[M ]. We put b1 = z′1 and bi = z′i ∧ (
∧i−1

j=1 zj) for every i ≥ 2.

Consider gn = fbn ∧ 2−n for every n ∈ N. Hence, {gn}n∈N ⊆ M . We define the real-trail
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t : P(R) → L on the frame L by

t(r) =


∧

n∈N zn if r = 0

bn if r = 2−n, for some n ∈ N

⊥ otherwise.

Then the following statements hold.

(1)
∑n

i=1 gi =
∨n

i=1 gi ∈ M .

(2)
∨

i∈N gi = φt.

(3) coz (
∨n

i=1 gi) =
∨

i∈N bi.

(3) z(φt) =
∧

n∈N zn ̸∈ Z[M ] and φt ̸∈ M .

Then 0 ̸= φt +M = φt +
∑n

i=1 gi +M ≤ 2−n for every n ∈ N, which implies that φt +M is

infinitely small element of FP (L)
M , and so FP (L)

M is not archimedean. Therefore, by Proposition

4.2, M is not real, which is a contradiction.

Definition 4.15. An ultrafilter F of B(L) is called a real ultrafilter if Z←(F) is a real maximal

ideal of FP(L).

Corollary 4.16. Let F be an ultrafilter F of B(L). Then the following statements hold.

(1) If F is closed under countable meet, then F is a real ultrafilter of B(L).

(2) If B(L) is a sub-σ-frame of a zero-dimensional frame L and F is a real ultrafilter of

B(L), then

(a) F is closed under countable meet, and

(b) if {fn : n ∈ N} ⊆ FP(L) such that
∧

n∈N z(fn) ∈ F , then z(fn) ∈ F for some

n ∈ N.

Proof. (1) and 2(a) follow from Proposition 4.14.

(b). We argue by contradiction. Let us assume that {z(fn)}n∈N ∩ F = ∅. Then for every

n ∈ N, there is an element z(gn) ∈ F such that z(fn) ∧ z(gn) = ⊥. By the statement

(a),
∧

n∈N z(gn) ∈ F and, by hypothesis, ⊥ = (
∧

n∈N z(gn)) ∧ (
∧

n∈N z(fn)) ∈ F , which is a

contradiction.

By Proposition 4.13, Example 4.12 shows that B(L) is a sub-σ-frame of L is necessary in

the following proposition.

Proposition 4.17. Let B(L) be a sub-σ-frame of a zero-dimensional frame L. Then every

fixed maximal ideal of FP(L) is real.
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Proof. Consider M is a fixed maximal ideal of FP(L). Let {fn}n∈N ⊆ M with
∧

n∈N z(fn) = ⊥
be given. Since B(L) is the sub-σ-frame of L, we conclude that∨

f∈M
coz (f) ≥

∨
n∈N

coz (fn) = (
∨
n∈N

coz (fn))
′′ = (

∧
n∈N

z(fn))
′ = ⊤,

which is a contradiction. Therefore, by Proposition 4.14, M is a real maximal ideal of FP(L).

The following example shows that the above proposition does not hold if B(L) is not a

sub-σ-frame of the zero-dimensional frame L.

Example 4.18. Let {an}n∈N ⊆ Q and {bn}n∈N ⊆ Q such that for every n ∈ N, an < an+1 <

bn+1 < bn and limn→∞ an =
√
2 = limn→∞ bn. Consider L := {O ∩ (R \ Q) : O ∈ O(R) },

c := {x ∈ R \Q : x ̸=
√
2 } ∈ L and cn := {x ∈ R \Q : x < an or bn < x } ∈ L for every n ∈ N.

Then { fcn } is a subset of the fixed maximal ideal of Mc := { f ∈ FP(L) : coz (f) ≤ c }. By

Proposition 4.14, since
∧

n∈N z(fcn) = ⊥, we conclude that Mc is not a real maximal. It is

clear that B(L) is not a sub-σ-frame of the zero-dimensional frame L.

Now, it is normal to ask what are the frames for which every real maximal ideal of FP(L)
is fixed. This leads us to the following definition.

Definition 4.19. A frame L is said to be a FP -realcompact provided that every real maximal

ideal of FP(L) is fixed.

We recall that a frame L is said to be a Lindelöf frame provided that every subset of S,∨
S = ⊤ implies there exists a countable subset S′ of S such that

∨
S′ = ⊤.

Proposition 4.20. If B(L) is a sub-σ-frame of a Lindelöf zero-dimensional frame L, then L

is an FP-realcompact frame.

Proof. Consider M is a real maximal ideal of FP(L). We show that M is fixed. If not,

there exists a family {fn}n∈N ⊆ M such that
∨

n∈N coz (fn) = ⊤, because L is Lindelöf. By

Propositions 4.14 and 4.17, ⊥ =
∧

n∈N z(fn) ∈ Z[M ], which is a contradiction.

In view of Propositions 4.2 and 4.13, we obtain the following proposition.

Proposition 4.21. Let L be a zero-dimensional frame. L is a compact frame if and only if L

is an FP-realcompact frame, and FP (L)
M is archimedean for every maximal ideal M of FP(L).
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5. Free ideals of FP(L)

It is well known that if X is a completely regular topological space, then

(1) CK(X) is equal to the intersection of all free ideals C(X) and this is true for C∗(X).

(2) C∞(X) is equal to the intersection of all free maximal ideals C∗(X).

In this section, we show a counterpart of above result in FP(L) and F∗P(L). We begin with

the following definition.

Definition 5.1. For every frame L, FPK
(L) is the family of all f ∈ FP(L) such that coz (f)

is a compact element of L.

The following proposition is a counterpart of (1) in FP(L) and F∗P(L).

Proposition 5.2. Let L be a zero-dimensional frame. Then FPK
(L) is equal to the intersection

of all free ideals FP(L) and this is true for F∗P(L).

Proof. Consider f ̸∈ FPK
(L). Since coz (f) is not compact, we conclude from Lemma 4.5 that

there exists a free maximal ideal M of FP(L) such that coz (f) ∈ Z[M ], which implies that

f ̸∈ M . Let I be an arbitrary free ideal of FP(L) and f ∈ FPK
(L). Since coz (f) is a compact

element of L, we conclude from Propositions 3.3 and 4.9 that f ∈ I. Therefore, FPK
(L) is

equal to the intersection of all free ideals FP(L). The rest is similar.

Definition 5.3. For every frame L, FP∞(L) is the family of all f ∈ FP(L) such that ↑f(− 1
n ,

1
n),

ordered by the relation of L, is a compact frame for every n ∈ N.

The following proposition is a counterpart of (2) in F∗P(L).

Proposition 5.4. If B(L) is a sub-σ-frame of a zero-dimensional frame L, then FP∞(L) is

equal to the intersection of all free maximal ideals of F∗P(L).

Proof. Let M be a free maximal ideal of F∗P(L) and f ∈ FP∞(L). Since for every n ∈ N,
f(R \ (− 1

n ,
1
n)) is a compact element of L, we conclude from Lemma 4.5 that for every n ∈ N,

f(R \ (− 1
n ,

1
n)) ∈ Coz[M ], which from Propositions 3.3, 4.10 and 4.14 implies f ∈ M .

Now, let f ̸∈ FP∞(L) be given. Then zn := |f |([ 1n ,−) is not compact for some n ∈ N,
which from Lemma 4.5 implies that there exists a free maximal ideal M of FP(L) such that

zn ∈ Z(M) and so |f |+M ≥ 1/n. Thus, there exists a nonnegative element g ∈ F∗P(L) such
that |f | − 1/n − g ∈ M . Now, supposing M∗ the unique maximal ideal in F∗P(L) containing

M , we have |f | − 1/n− g ∈ M∗ and so |f | − 1/n+M∗ ≥ 0. Hence, |f | /∈ M∗, so f /∈ M∗ and

clearly M∗ is a fee maximal ideal of F∗P(L).
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The following example shows that the above proposition does not hold if B(L) is not a

sub-σ-frame of the zero-dimensional frame L.

Example 5.5. Let X = N∪{n+ 1
m+1 : m,n ∈ N} be a topological space with relative topology

of R, and L = O(X). It is clear that {1 + 1
n+1} is a complemented element of L for every

n ∈ N, and
∨

n∈N{1+
1

n+1} is not a complemented element of L, then B(L) is not sub-σ-frame

of L. Also, since L is not compact, we conclude that FPL ̸= FP∞L.

The function α : R → L given by

α(x) =

[n, n+ 1
2 ] ∩X if x = 1

n for some n ∈ N

⊥ otherwise

is a real-trail on L, and fα ∈ FP∞L \ FPKL is a unit element of FPL. Therefore, FPKL is a

proper ideal of FP∞L.

The function αn : R → L given by

αn(x) =


an = [n, n+ 1

2 ] ∩X if x = 1

a′n = ([n, n+ 1
2 ] ∩X)′ if x = 0

⊥ otherwise

is a real-trail on L for any n ∈ N , and coz (fαn) = an. Since fαn ∈ FPKL, and
∨

n∈N an = ⊤,

we conclude that FPKL is a free ideal of rings FP∞L, F∗PL and FPL.

If M is a free maximal ideal of F∗PL such that FPKL ⊆ M , then FP∞ ̸⊆ M and

FP∞ ̸=
∩{

M : M is a free maximal ideal of F∗PL
}
.

For the proofs of the following corollaries, we need the following proposition which is proved

in [24, Corollary 3.6].

Proposition 5.6. Let A be a commutative algebra over the rational numbers with unity. Let

I be an ideal of A. Then an ideal D of I is a maximal ideal of I if and only if D = M ∩ I for

some maximal ideal M in A, with I ̸⊆ M .

Corollary 5.7. If B(L) is a sub-σ-frame of a zero-dimensional frame L, then every ideal of

FP∞(L) is fixed.

Proof. Let N be a free maximal ideal of FP∞(L). Since FP∞(L) is an ideal of a commutative

algebra over the rational numbers with unity F∗P(L), we conclude from Proposition 5.6 that

there exists a maximal ideal M of F∗P(L) such that FP∞(L) ̸⊆ M and N = M∩FP∞(L), which

implies that M is free maximal ideal of F∗P(L) such tat FP∞(L) ̸⊆ M , which is a contradiction

by Proposition 5.4. Since every ideal of FP∞(L) is contained in a maximal ideal of FP∞(L),

we conclude that every ideal of FP∞(L) is fixed.
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Corollary 5.8. If L is a zero-dimensional frame, then every ideal of FPK
(L) is fixed.

Proof. The proof is similar to the proof of Corollary 5.7.

6. real Riesz maps on Fp(L)

We recall from [16, p. 142] that for every real compact space X, φ : C(X) → R is a nonzero

Riesz map if and only if there exists a unique p ∈ X such that φ(f) = f(p) for each f ∈ C(X).

In this section, we show that Proposition 6.2 is a counterpart of above result.

Lemma 6.1. The map coz : FP(L) → L given by f 7→ coz (f) is a Q-compatible bounded

continuous cozero lattice-valued map.

Proof. By Proposition 2.1, the map coz is a cozero lattice-valued map.

For every ⋄ ∈ {+, ·,∨,∧}, f, g ∈ FP(L), and r, s, w, z, p, q ∈ Q, if

< r, s > ⋄ < w, z >⊆< p, q >

then we have

coz (δfrs) ∧ coz (δgwz) = coz ((f − r)+ ∧ (s− f)+) ∧ coz ((g − w)+ ∧ (z − g)+)

= f(r, s) ∧ g(w, z)

≤ f ⋄ g(p, q)

= coz ((f ⋄ g − p)+) ∧ (q− (f ⋄ g))+

= coz (δf⋄gpq ),

which implies that the lattice-valued map coz is Q-compatible. For every f ∈ FP(L), we have∨
p,q∈Q

coz (δfpq) =
∨

p,q∈Q
coz ((f − p)+ ∧ (q− f)+) =

∨
p,q∈Q

f(p, q) = ⊤.

Hence, the lattice-valued map coz is bounded. Also, for any p, q ∈ Q and any f ∈ FP(L),

coz (δfpq) = coz ((f − p)+ ∧ (q− f)+)

= f(p, q)

=
∨

r,s∈Q,
p<r<s<q

f(r, s)

=
∨

r,s∈Q,
p<r<s<q

coz ((f − r)+ ∧ (s− f)+)

=
∨

r,s∈Q,
p<r<s<q

coz (δfrs),

which implies that the lattice-valued map coz is continuous. The proof is now complete.
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Proposition 6.2. Let B(L) be a sub-σ-frame of a zero-dimensional frame L, and let φ :

FP(L) → R be a function such that φ ̸= 0 and φ(rf +gh) = rφ(f)+φ(g)φ(h) for every r ∈ R
and f, g, h ∈ FP(L). If every maximal ideal of FP(L) is real, then there exists an element

p ∈ L such that φ = p̃ coz .

Proof. By Lemma 6.1, coz ∈ F (FP(L), L) is a Q-compatible bounded continuous cozero

lattice-valued map and φ is nonzero bounded Riesz map φ : FP(L) → R. By Proposition

4.10, L is compact and, by Proposition 4.13, every maximal ideal of FP(L) = F∗P(L) is fixed.
Since φ is an f -ring epimorphism, we infer that φ : FP (L)

ker(φ) → R given by f + ker(φ) 7→ φ(f)

is an isomorphism. Since ker(φ) is a maximal ideal of FP(L), we conclude that there exists

an element p ∈ ΣL such that
∨

coz (ker(φ)) ≤ p, which from Proposition 2.3 implies that

φ = p̃ coz .
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