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A CLASS OF WELL-COVERED AND VERTEX DECOMPOSABLE

GRAPHS ARISING FROM RINGS

M. VAFAEI, A. TEHRANIAN* AND R. NIKANDISH

Abstract. Let Zn be the ring of integers modulo n. The unitary Cayley graph of Zn is

defined as the graph G(Zn) with the vertex set Zn and two distinct vertices a, b are adjacent

if and only if a − b ∈ U (Zn), where U (Zn) is the set of units of Zn. Let Γ(Zn) be the

complement of G(Zn). In this paper, we determine the independence number of Γ(Zn). Also

it is proved that Γ(Zn) is well-covered. Among other things, we provide condition under

which Γ(Zn) is vertex decomposable.

1. Introduction

Assigning a graph to a ring gives us the ability to translate algebraic properties of rings

into graph theory language and vice versa. It leads to arising interesting algebraic and com-

binatorics problems. Therefore, the study of graphs associated with rings has attracted many

researches. There are a lot of papers which apply combinatorial methods to obtain algebraic
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results in ring theory; for instance see [3], [6], [7] and [8]. Moreover, for the most recent study

in this field see [1], [5], [12] and [17].

Let G be a simple graph with the vertex set V (G) and the edge set E(G). An independent

vertex set of a graph G is a subset of the vertices such that no two vertices in the subset

represent an edge of G. The independence number of G, denoted by α(G), is the cardinality of

the largest independent vertex set in G. For any x ∈ V (G), degG(x) or (deg(x)) represents the

number of edges incident to x, called the degree of the vertex x in G. Let r be a non-negative

integer. A graph G is called r-regular if degG(v) = r, for each vertex v of G. Let G1 and G2

be two graphs. The category product of G1 and G2, G1 ⊗ G2, is the graph with vertex set

V (G1 ⊗G2) := V (G1)× V (G2), specified by putting (u, v) adjacent to (u
′
, v

′
) if and only if u

is adjacent to u
′
in G1 or v is adjacent to v

′
in G2.

A clique of G is a complete subgraph of G and the number of vertices in the largest clique

of G, denoted by ω(G), is called the clique number of G. A cycle on three or more vertices

is a simple graph whose vertices can be arranged in a cyclic sequence in such a way that two

vertices are adjacent if they are consecutive in the sequence, and are nonadjacent otherwise.

For any positive integer n, there is a unique cycle on n vertices. This graph is denoted by

Cn. A graph is called chordal if every cycle of length at least four has a chord. Let G and

H be two graphs with disjoint vertex sets. For two graphs G and H, the graph on vertex set

V (G ∪H) = V (G) ∪ V (H) with edge set E(G ∪H) = E(G) ∪ E(H) is denoted by G ∪H. If

a graph G consists of k(≥ 2) disjoint copies of a graph H, then we write G = kH. A graph

H = (V0, E0) is called a subgraph of G if V0 ⊆ V and E0 ⊆ E. Moreover, H is called an

induced subgraph by V0, denoted by G[V0], if V0 ⊆ V and E0 = {{u, v} ∈ E |u, v ∈ V0}.
The neighborhood of a vertex v ∈ V is the set NG(v) = {u | u ∈ V (G), vu ∈ E(G)}.

Similarly, for A ⊆ V (G), we have NG(A) = ∪v∈ANG(v) and NG[A] = A ∪ NG(A). For any

two non-adjacent vertices of V (G), such as u, v, the graph with the vertex set V (G) and the

edge set E(G)∪{u, v} is denoted by G∪{u, v}. Also the induced subgraph of G on the vertex

set V (G) \ A is denoted by G \ A. Moreover, the graph G is called well-covered if all its

maximal independent sets are of the same size. Furthermore, if G has no isolated vertices and

|V (G)| = 2α(G), thenG is very well-covered. A vertex x is called simplicial vertex ifNG[x] is a

clique. A simplicial complex ∆, on a finite set V , is a set of subsets of V closed under inclusion.

The elements of ∆ is called face of ∆ and the maximal faces with respect to inclusion are

called facet of ∆. A simplicial complex that has only one faset, ia called simplex. Recall that a

simplicial complex ∆ is called pure if every facets has the same number of elements. Let σ ∈ ∆,

the link and the deletion of σ from ∆ are given by link∆σ := {τ ∈ ∆ | σ ∩ τ = ∅, σ ∪ τ ∈ ∆}
and del∆σ := {τ ∈ ∆ | σ * τ}. The independence complex of a graph G, denoted by Ind(G),

is the simplicial complex whose faces are the independent sets of G. A simplicial complex ∆
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is recursively defined to be vertex decomposable if it is either a simplex or else has some vertex

v so that (1) both ∆ \ v and link∆v are vertex decomposable, and (2) no face of link∆v is a

facet of ∆ \ v. During the last two decades, many researchers have been interested in finding

well-covered or vertex decomposable graphs, see for instance [13] and [14].

Given a ring R, let Z(R) denote the set of zero divisors of R, and Z∗(R) = Z(R) \ {0}.
Let Zn be the ring of integers modulo n. The unitary Cayley graph of Zn is defined as the

graph G(Zn) with the vertex set Zn and two distinct vertices a, b are adjacent if and only if

a− b ∈ U (Zn), where U (Zn) is the set of units of Zn. Let Γ(Zn) be the complement of G(Zn).

In this paper, new families of well-covered graphs and vertex decomposable graphs are given.

Now we are ready to start the first section.

2. When Γ(R) is well-covered?

We start this section with the following propositions.

Proposition 2.1. [9, Proposition 1] Let R be a finite local ring. Then |R| = pn, for some

prime p and some positive integer n.

Lemma 2.2. Suppose R = Zpt, where p is a prime. For Z(R) = m = {a1, · · · , apt−1}, consider
the cosets of m by Ti(R) = {a1 + i1R, · · · , apt−1 + i1R}, for 1 ≤ i ≤ p− 1. Then:

(i) If x and y are two distinct elements in Z(R) = m, then x− y ∈ Z(R).

(ii) If x and y are two distinct elements in Ti(R), then x− y ∈ Z(R).

(iii) If x and y are two distinct elements in Z(R) ∪ (
∪p−1

i=1 Ti(R)) that are not in the same

set, then x− y ∈ U(R).

Proof. It is clear that
∪p−1

i=1 Ti(R) = U(R) and {Z(R), T1(R), · · · , Tp−1(R)} is a partition of

R into their subsets. Since Z(R) = m is a maximal ideal of R, (i) and (ii) are clear. Now

suppose that x ∈ Z(R) and y ∈ Ti(R) where i ∈ {1, 2, · · · , p− 1}. If x− y ∈ Z(R), then there

exists u ∈ {1, 2, · · · , pt−1} such that x− y = au ∈ Z(R). Therefore x− au = y ∈ Z(R)∩U(R),

a contradiction. Now we assume that i, j ∈ {1, 2, · · · , p − 1} and i ̸= j such that y ∈ Ti(R)

and x ∈ Tj(R). Without loss of generality, assume that i � j. So there exist 1 ≤ u, v ≤ pt−1

such that x = au + j1R and y = av + i1R. Therefore x − y = (au + j1R) − (av + i1R) =

(au − av) + (j − i)1R ∈ Tj−i(R) ⊆ U(R).

Proposition 2.3. Let R = Zn.Then the following statements hold:

(i) Γ(R) is a |Z∗(R)|-regular graph.

(ii) If R ≃ Zp
n1
1

× Zp
n2
2

× · · · × Zp
nt
t

where p
′
is are primes, then Γ(R) = ⊗t

i=1Γ(Zpni i).
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Proof. (i) Is clear, by [2, Proposition 2.2].

(ii) We know that each element of R is a vertex of ⊗t
i=1Γ(Zp

ni
i
) and two vertices in

⊗t
i=1Γ(Zp

ni
i
) are adjacent if and only if their difference is in at least one component, say

1 ≤ i ≤ t, is a zero divisor of Zp
ni
i
. So the proof is complete.

Proposition 2.4. Let (R,m) be a finite local ring. Then Γ(R) is totally disconnected or

Γ(R) = pK|m|, where p is a prime number.

Proof. It is known that R is a field if and only if Z(R) = m = 0 if and only if Z∗(R) = ∅. In

this case, Γ(R) is an empty graph. By part two of [2, Proposition 2.2] and this fact that Γ(R)

is complement of G(R), we conclude that Γ(R) is the union of (distinct) complete graphs of

the form K|m|, where the number of such complete graphs is | R
m

|= p.

Proposition 2.5. Let R = Zpn. Then the following statements hold:

(i) If n = 1, then α(Γ(R)) = p and there exists exactly one maximal independent set of Γ(R).

(ii) If n > 2, then α(Γ(R)) = p and the number of maximal independent sets of Γ(R) is

p(n−1)p.

Proof. (i) If n = 1, then R is a field and m = 0. So Γ(R) is an empty graph and has one

maximal independent set of the form V (Γ(R)). Then Γ(R) is well-covered.

(ii) If n ≥ 2, then Γ(R) is of the form pK|m|. So by selecting one element of any K|m|, every

maximal independent set has p elements and so the number of such maximal independent sets

is (pn−1)p = p(n−1)p. Hence Γ(R) is well-covered.

Proposition 2.6. Let R = Zn ≃ Z
p
n1
1

×Z
p
n2
2

× · · · ×Z
p
nt
t

be a finite ring such that p1 ≤ p2 ≤
· · · ≤ pt. Then:

(i) Γ(R) is a |Z∗(R)|-regular graph.

(ii) Γ(R) is well-covered and α(Γ(R)) = p1.

(iii) For t > 2 the number of maximal independent sets of Γ(R) is(
Πt

i=1p
(ni−1)p1
i

)(
Πt

i=1Π
p1
j=1(pi − p1 + j)

)
.

Proof. (i) By part one of Proposition 2.3, the proof is clear.

(ii) Since Γ(R) is p1-partite whose parts are complete graphs and each vertex in every part

is adjacent with the same number of vertices in other parts, we deduce α(Γ(R)) = p1 .

(iii) Assume that t > 2. We need to find the number of all maximal independent sets of

order p1 in Γ(R). The number of possible choices for the i-th component of j-th member, is
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equal with (pi − (j − 1))p
(ni−1)
i such that 1 6 i 6 t and 1 6 j 6 p1 . Multiplying all possible

states for each of the components in each of the members, the ruling will result.

3. When Γ(R) is vertex decomposable?

A simplicial complex ∆ is recursively defined to be vertex decomposable if it is either a

simplex or else has some vertex v so that (1) both ∆ \ v and link∆v are vertex decomposable,

and (2) no face of link∆v is a facet of ∆ \ v. Vertex decomposability is introduced by Provan

and Billera in [16] in the pure case and extended to the non-pure case by Björner and Wachs

in [10] and [11]. We call a graph G vertex decomposable if the independence complex Ind(G)

is vertex decomposable. In [19] Woodroofe translated the definition of vertex decomposability

for graphs as follow.

Definition 3.1. A graph G is called vertex decomposable if either it is an edgeless graph or

it has a vertex x such that:

(i) G \ {x} and G \NG[x] are both vertex decomposable.

(ii) For every independent set S of G \NG[x], there is some vertex y ∈ NG(x) such that

S ∪ {y} is an independent set of G \ {x}.

The vertex x of G that satisfies condition (ii) is called a shedding vertex of G.

Proposition 3.2. [19, Corollary 7] A chordal graph is vertex decomposable.

Example 3.3. Let C4 be a cycle of order 4. Clearly C4 is not a vertex decomposable graph.

Proposition 3.4. [15, Lemma 2.2] Let G and H be two graphs that V (G)∩V (H) = ∅, and set

W = G∪H. Then W is vertex decomposable if and only if G and H are vertex decomposable.

The first main result of this section is the following theorem which provides a new method

for constructing vertex decomposable graphs.

Theorem 3.5. Let R = Zpn. Then Γ(R) is vertex decomposable.

Proof. There are two cases, based on whether R is a field or not.

Case 1 We consider the case in which R is a field or equivalently n = 1. Then it is clear that

Γ(R) is totally disconnected and according to the definition, Γ(R) is vertex decomposable.

Case 2 If R is not a field, then

Γ(R) = tK|Z (R)| = K|Z (R)| ∪ ... ∪K|Z (R)|

where t is the cardinality of
R

Z(R)
. Combining this observation with Propositions 3.2 and 3.4,

we conclude that Γ(R) is vertex decomposable.
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Theorem 3.6. Let R = Zn ≃ Z2r × Zp
r2
2

× · · · × Zprnn , where 2 � p2 � p3 � · · · � pn. Then

Γ(R) is vertex decomposable.

Proof. One can easily see that Γ(R) contains two complete graphs of order

pr22 × pr33 × ...× prnn × 2r−1

and every vertex in

K|Z
p
r2
2

×Z
p
r3
3

×...×Zp
rn
n

|2r−1

is adjacent to exactly 2r−1|Z(Zp
r2
2

× Zp
r3
3

× ...× Zprnn )| vertices in other

K|Z
p
r2
2

×Z
p
r3
3

×...×Zp
rn
n

|2r−1 .

We call these two complete subgraphs S9 and S10. Assume that the first component of

each of these parts belongs to cosets T1(Z2r) and T2(Z2r), respectively. Obviously, every

vertex of each of these parts is a vector of length n, and t-th component of it belongs to

Ti(Zp
rt
t
) such that 2 6 t 6 n and 1 6 i 6 pt. Consider S9 and let d ∈ T1(Z2r). We

suppose that β = (β1, ..., βn) ∈ S9 such that β1 ̸= d. Without loss of generality, assume that

βi ∈ T1(Zp
ri
i
), 2 ≤ i ≤ n. The subgraph E = Γ(R)\N [β] is complete and so is chordal. Hence,

E is vertex decomposable. Every vertex in E, is a vector of length n and its first component

belongs to T2(Z2r) and t-th component of it is belong to Ti(Zp
rt
t
) such that 2 6 t 6 n and

2 6 i 6 pt. Each independent set in E has at most one element. One may find a vertex in

S9 such that its firts component is d and its t-th component is in a coset different from the

coset associated with the t-th component of the vertex in the given independent set. Thus

we can make a larger independent set in Γ(R) \ {β}. Therefore every vertex in S9 with its

first component is different from d is a shedding vertex of Γ(R) and we can remove it. The

graphs obtain from Γ(R) and S9 by removing these vertices are denoted by Γ(R)
′
and S91,

respectively. All vertices in S91 are vectors of length n and its first component is d, and the

t-th component of them is belong to Ti(Zp
rt
t
) that 2 6 t 6 n and 1 6 i 6 pt. Among all of

the possible cosets for t-th component of vertices in S91, 2 6 t 6 n, select two cosets and in

every of these cosets consider an arbitrary element. We can remove other vertices in S91 as

shedding vertices in Γ(R)
′
. Hence S91 contains 2n−1 vertices. The graphs obtain from Γ(R)

′

and S91 by removing these vertices are denoted by Γ(R)
′′
and S92, respectively. The induced

subgraph by S92 is K2n−1 . No vertex of S92 in Γ(R)
′′
is a shedding vertex. If a vector in S10

share a common component with a vector in S92, then we can remove it from S10. Repeating

this procedure, S10 is reduced to a complete graph which is not adjacent to no vertex in S92.

So we get two complete separated graphs, that obviously it is vertex decomposable. Therefore

Γ(R) is vertex decomposable.
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The following example explains Theorem 3.6.

Example 3.7. Let R = Z6 ≃ Z2 × Z3, and let T1(Z2) = {0}, T2(Z2) = {1}, T1(Z3) =

{0}, T2(Z3) = {1} and T3(Z3) = {2}. According to the previous argument, we can select(
0, 0 ) ,

(
1, 1 ) and

(
1, 2 ) as shedding vertices, respectively. It is obvious that Γ(R) is vertex

decomposable.

Theorem 3.8. Let R = Zn ≃ Z3r × Zp
r2
2

× · · · × Zprnn , where 3 � p2 � p3 � · · · � pn. Then

Γ(R) is vertex decomposable.

Proof. One can easily see that Γ(R) contains three complete graphs of order

pr22 × pr33 × ...× prnn × 3r−1

and every vertex in

K|Z
p
r2
2

×Z
p
r3
3

×...×Zp
rn
n

|3r−1

is adjacent to exactly 3r−1|Z(Zp
r2
2

× Zp
r3
3

× ...× Zprnn )| vertices in other

K|Z
p
r2
2

×Z
p
r3
3

×...×Zp
rn
n

|3r−1 .

These induced subgraphs are named by S6, S7 and S8. Assume that the first component of

each of these parts, respectively belong to cosets T1(Z3r), T2(Z3r) and T3(Z3r). Focus on S6.

Consider c ∈ T1(Z3r), arbitrary and fixed. We arbitrarily select z = (z1, ..., zn) ∈ S6 such that

z1 ̸= c. Without loss of generality, assume that zi ∈ T1(Zp
ri
i
), 2 ≤ i ≤ n. Set D = Γ(R)\N [z].

By Theorem 3.6, D is a vertex decomposable graph and We can expand every independent set

of D, which has at most two members, to a larger independent set in Γ(R) \ {z}, by selecting

a suitable vertex in S6, in the way that, its first component be c, and its t-th component,

2 6 t 6 n, be in the cosets other than cosets of t-th component of vertices in that independent

set. Therefore, we can eliminate all the vertices which are similar to z in S6, as a shedding

vertex. By doing so, S6 is changing to S61 and Γ(R) is changing to Γ1(R). Now by the process

of Theorem 3.6, we select three arbitrary cosets, and from each one, just one element, among

the cosets of Zp
rt
t
, that means the cosets Ti(Zp

rt
t
) that 2 6 t 6 n and 1 6 i 6 pt. These choices

specify 3n−1 vertices in S61. We can eliminate other vertices in S61, as shedding vertices in

Γ1(R). Thus S61 is changing to S62 and Γ1(R) is changing to Γ2(R). No vertex of S62 in

Γ2(R) is a shedding vertex. Now, we focus on the vertices in S7. Consider e ∈ T2(Z3r),

arbitrary and fixed. We can eliminate all the vertices in S7, whose first component is not e, as

a shedding vertex in Γ2(R). So S7 is changing to S71 and Γ2(R) is changing to Γ3(R). Now,

we can eliminate all the vertices in S71, whose t-th component is in the same coset of the t-th

component of the vertices in S62, as a shedding vertex in S71, 2 6 t 6 n. Thus S71 is changing

to S72 and Γ3(R) is changing to Γ4(R). In this case, there is no edge between S72 and S62
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and edges are just between each of these sections and S8. In the t-th component of vertices

in S72, we choose from each of the cosets only one element arbitrary, and eliminate others as

a shedding vertex, 2 6 t 6 n. So S72 is changing to S73 and Γ4(R) is changing to Γ5(R).

Consider f ∈ T3(Z3r), arbitrary and fixed. We can eliminate all the vertices in S8, whose first

component is not f , as a shedding vertex in Γ5(R). Thus S8 is changing to S81. Now we note

that whether the number of choosen cosets for second component of vertices in S73 is greater

or in S62. From the greater one, we eliminate extra vertices as shedding vertices, as far as the

number of cosets of their second components get equal. Now, we can eliminate all the vertices

in S81, whose second component is in the same coset of the second component of the vertices

in S73 or S62, as a shedding vertex. Thus S81 is changing to S82. Among all of the remaining

cosets for the second component of vertices in S82, select an arbitrary element and eliminate

the rest as a shedding vertex. Thus S82 is changing to S83. By continuing and repeating this

procedure on the t-th component of vertices in S83, S73 and S62, 3 6 t 6 n, we have a graph

of three component, in which each of the component is a complete graph and there is no edges

between them. As a result, Γ(R) is vertex decomposable.

Theorem 3.9. Let R = Zn ≃ Zp
r1
1

× Zp
r2
2

× · · · × Zprnn , where 5 ≤ p1 � p2 � p3 � · · · � pn

and p2 ≥ ⌈p1
2
⌉+ ⌊p1

2
⌋(⌈p1

2
⌉+ 1). Then Γ(R) is vertex decomposable.

Proof. One can easily see that Γ(R) contains p1 complete graphs of order

pr22 × pr33 × ...× prnn × pr1−1
1

and every vertex in

K|Z
p
r2
2

×Z
p
r3
3

×...×Zp
rn
n

|pr1−1
1

is adjacent to exactly pr1−1
1 |Z(Zp

r2
2

× Zp
r3
3

× ...× Zprnn )| vertices in every one of (p1 − 1) other

K|Z
p
r2
2

×Z
p
r3
3

×...×Zp
rn
n

|pr1−1
1

graphs. Select one of these p1 parts arbitrary, and call it S11. Vertices

in it are vectors of length n whose first component belongs to a coset of Zp
r1
1
, such as T1(Zp

r1
1
).

Note that the t-th component of each of the vertices in R, 1 6 t 6 n, may belong to exactly

one coset of type Tj(Zp
rt
t
), 1 6 j 6 pt. Consider a ∈ T1(Zp

r1
1
), arbitrary and fixed. We

arbitrarily select x = (x1, ..., xn) ∈ S11 such that x1 ̸= a . Without loss of generality, assume

that xi ∈ T1(Zp
ri
i
), 2 ≤ i ≤ n. Now, the vertex set of A = Γ(R) \ N [x] can be partitioned

into (p1 − 1) parts: the subgraph induced on each part is a complete graph and A might have

some edges between some of these parts. Observe that every vertex in each of these parts

is a vector of length n with the property that its t-th component belongs to Ti(Zp
rt
t
), where

1 6 t 6 n and 2 6 i 6 pt. We now repeat this process with the graph Γ(R) replaced by A and

we do this up to (p1 − 5)- times. The resulting graph, which we denote by B, consists of four
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parts: the subgraph induced on each part is a complete graph and B might have some edges

between some of these parts. We name this four parts by S2,S3,S4 and S5. Assume that the

first component of vertices in each of these parts, belong to cosets Tp1−3(Zp
r1
1
) , Tp1−2(Zp

r1
1
) ,

Tp1−1(Zp
r1
1
) and Tp1

(Zp
r1
1
) respectively. According to the proof, every vertex in each of these

parts is a vector of length n that t-th component of it, is belong to Ti(Zp
rt
t
) such that 2 6 t 6 n

and p1 − 3 6 i 6 pt. Focus on S2. Consider b ∈ Tp1−3(Zp
r1
1
), arbitrary and fixed. We select

y = (y1, ..., yn) ∈ S2 such that y1 ̸= b arbitrary. Without loss of generality, assume that

yi ∈ Tp1−3(Zp
ri
i
), 2 ≤ i ≤ n. C = B \ N [y] is a graph with three parts and according to the

proof of the Theorem 3.8 is vertex decomposable. We can expand every independent set of C

which has at most three members to a larger independent set in B \{y} by selecting a suitable

vertex in S2, in the way that, its first component be b, and its t-th component, 2 6 t 6 n,

be in the coset other than cosets of t-th component of vertices in that independent set. Now,

we can eliminate all the vertices in S2 whose first component is not b, as a shedding vertex in

B. So S2 is changing to S21 and B is changing to B1. In this step, we select four arbitrary

cosets, and from each one, just one element, among the cosets of Zp
rt
t
, that means the cosets

Ti(Zp
rt
t
), 2 6 t 6 n and p1 − 3 6 i 6 pt. These choices specify 4n−1 vertices in S21. We can

eliminate other vertices in S21 as shedding vertices in B1. So S21 is changing to S22 and B1 is

changing to B2. Now, we focus on the vertices in S3. Consider g ∈ Tp1−2(Zp
r1
1
), arbitrary and

fixed. We can eliminate all the vertices in S3, whose first component is not g, as a shedding

vertex in B2. So S3 is changing to S31 and B2 is changing to B3. Now, we can eliminate

all the vertices in S31, whose t-th component is in the same coset with the coset which is

related to the t-th component of the vertices in S22 as a shedding vertex in B3, 2 6 t 6 n.

Thus S31 is changing to S32 and B3 is changing to B4. In the t-th component of vertices in

S32, we choose from each of the cosets only one element arbitrary, and eliminate others as a

shedding vertex, 2 6 t 6 n.Thus S32 is changing to S33 and B4 is changing to B5. In this case,

there is no edge between S33 and S22. The second component of vertices in S22, is in the four

cosets of the form Ti(Zp
r2
2
), p1 − 3 6 i 6 p2, and the second component of vertices in S33 is in

p2−(p1−4)−4 = p2−p1 cosets. In this case, since other than S33 and S22 only S4 and S5 have

remaind that we have not made any changes in their vertices, we can eliminate other vertices

in S33(S22), 2 6 t 6 n. So, S22, S33 and B5 are changing to S23, S34 and B6, respectively.

Now, we focus on the vertices in S4. Consider h ∈ Tp1−1(Zp
r1
1
), arbitrary and fixed. We can

eliminate all the vertices in S4, whose first component is not h, as a shedding vertex in B6.

So S4 is changing to S41 and B6 is changing to B7. Now, we can eliminate all the vertices

in S41 whose t-th component is in the same coset with the coset which is related to the t-th

component of the vertices in S23 and S34, as a shedding vertex in B7, 2 6 t 6 n. In this case,

for t-th component of vertices in S41, we arbitrary choose from each of the cosets, only one
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element, and eliminate others as a shedding vertex, 2 6 t 6 n. So, S41 and B7 are changing to

S42 and B8, respectively. In this case, since only S5 is remaining that we did not any change

in its vertices, we can choose only two distinct cosets for each of t-th component of vertices in

S42, S34 and S23, 2 6 t 6 n, and eliminate other vertices in S42, S34 and S23 as a shedding

vertex. So, S42, S34, S23 and B8 are changing to S43, S35, S24 and B9, respectively. Now, we

focus on the vertices in S5. Consider i ∈ Tp1
(Zp

r1
1
), arbitrary and fixed. We can eliminate all

the vertices in S5, whose first component is not i, as a shedding vertex in B9. So S5 is changing

to S51 and B9 is changing to B10. Now, we can eliminate all the vertices in S51, whose t-th

component is in the same coset with the coset which is related to the t-th component of the

vertices in S43, S35 and S24, as a shedding vertex in B10. So S51 is changing to S52 and B10

is changing to B11, and there is no edge between S52, S43, S35 and S24. Clearly we get four

complete vertex decomposable graphs. So B is vertex decomposable. If p1 = 5, then Γ(R)

is vertex decomposable and proof is finished. In the following, we assume that p1 
 5. Any

independent set of B has at most four members. With proper implementation of the above

mentioned process on graphs removed during the argument, which is obtained step by step

from each other by removing the closed neighborhood a vertex of a graph, we go to the Γ(R).

We know that A is vertex decomposable and we can expand every independent set of A, which

has at most p1 − 1 members to a larger independent set in Γ(R) \ {x}, by selecting a suitable

vertex in S11, in the way that , its first component be a, and its t-th component, 2 6 t 6 n, be

in the cosets other than cosets of t-th component of vertices in that independent set. Therefore,

we can eliminate all the vertices which are similar to x in S11 as a shedding vertex. By doing

so, S11 is changing to S111 and Γ(R) is changing to Γ1(R). Other parts of the Γ1(R) are named

S1j . So that the first component of their vertices, is at Tj(Zp
r1
1
), respectively, 2 6 j 6 p1. We

select p1 arbitrary cosets, and from each one, just one element, among the cosets of Zp
rt
t
, that

means the cosets Tj(Zp
rt
t
), 1 6 j 6 pt, 2 6 t 6 n. We can eliminate other vertices in S111 as a

shedding vertex. Thus S111 is changing to S112 and Γ1(R) is changing to Γ2(R). These choices,

specify pn−1
1 vertices in S112. Now, we focus on the vertices in S12. Consider k ∈ T2(Zp

r1
1
),

arbitrary and fixed. We can eliminate all the vertices in S12, whose first component is not k, as

a shedding vertex in Γ2(R). So S12 is changing to S121 and Γ2(R) is changing to Γ3(R). Now,

we can eliminate all the vertices in S121, whose t-th component are in the same coset with the

coset which is related to the t-th component of the vertices in S112, as a shedding vertex in

Γ3(R), 2 6 t 6 n. In this case, for t-th component of vertices in S121, we arbitrary choose from

each of the cosets, only one element, and eliminate others as a shedding vertex, 2 6 t 6 n. So,

S121 and Γ3(R) are changing to S122 and Γ4(R), respectively. The t-th component of vertices

in S112 are in p1 coset(one member of each coset)and t-th component of vertices in S122 are

in pt − p1 coset(one member of each coset), 2 6 t 6 n. Except from these two parts in Γ4(R),
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p1 − 2 other parts are untouched. S122 = K(p2−p1)(p3−p1)···(pt−p1). So, we can select p1 − 1

distinct cosets for t-th component of vertices in S122(S112)and eliminate other vertices in S122

(S112) as a shedding vertex in Γ4(R). So, S122, S112 and Γ4(R) are changing to S123, S113 and

Γ5(R) respectively. Now, we focus on the S13. Consider l ∈ T3(Zp
r1
1
), arbitrary and fixed. We

can eliminate all the vertices in S13, whose first component is not l, as a shedding vertex in

Γ5(R). So S13 is changing to S131 and Γ5(R) is changing to Γ6(R). Now, we can eliminate

all the vertices in S131, whose t-th component is in the same coset of the t-th component of

the vertices in S123 or S113, as a shedding vertex in Γ6(R), 2 6 t 6 n. In this case, for t-th

component of vertices in S131, we arbitrary choose from each of the cosets, only one element,

and eliminate others as a shedding vertex, 2 6 t 6 n. So, S131 and Γ6(R) are changing to

S132 and Γ7(R), respectively. Note that the number of remaining cosets for t-th component

of vertices in S132 is equal to: pt − (p1 − 1)− (p1 − 1) = pt − 2p1 + 2 ≥ 1. Except from S132,

S113 and S123, p1− 3 other parts in the Γ7(R) are still remaining untouched. So, we can select

only p1 − 2 distinct coset in t-th component for vertices in S132, S113 and S123, 2 ≤ t ≤ n,

and eliminate other vertices in S132, S113 and S123 as a shedding vertex. Thus S132, S113, S123

and Γ7(R) are changing to S133, S114, S124 and Γ8(R), respectively. Therefore, the number of

variety of cosets for t-th component of vertices in S133, S114 and S124 are equal. There is no

edge between this three part. By following this process for each of the p1 − 3 remaining parts,

respectively, we get to the p1 distinct and different complete graph that each of them is vertex

decomposable. So, their union is vertex decomposable. Thus Γ(R) is vertex decomposable.

We close this paper with the following example.

Example 3.10. Let R = Z25 and T1 = Z(Z25) = {0, 5, 10, 15, 20}, T2 = {1, 6, 11, 16, 21},
T3 = {2, 7, 12, 17, 22}, T4 = {3, 8, 13, 18, 23}, T5 = {4, 9, 14, 19, 24}. Clearly, all the elements

in Ti, 2 ≤ i ≤ 5, are unit. Moreover, difference between two arbitrary members in T1 is an

element of T1, difference between two arbitrary elements in each Ti, 2 ≤ i ≤ 5, is a zero divisor

and difference between two arbitrary members in T1 and every Ti, 2 ≤ i ≤ 5, is unit. The

difference between two arbitrary members in every pair Ti and Tj , 2 ≤ i, j ≤ 5 is unit.
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