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CAYLEY GRAPH ASSOCIATED TO A SEMIHYPERGROUP

KHADIJEH SHAMSI, REZA AMERI∗, SAEED MIRVAKILI

Abstract. The purpose of this paper is the study of Cayley graph associated to a semihy-

pergroup(or hypergroup). In this regards first we associate a Cayley graph to every semi-

hypergroup and then we study the properties of this graph, such as Hamiltonian cycles in

this graph. Also, by some of examples we will illustrate the properties and behavior of these

Cayley graphs, in particulars we show that the properties of a Cayley graph associated to

a semihypergroup is completely different with respect to the Cayley graph associated to a

semigroup(group). Also, we briefly discuss on category of Cayley graphs associated to semi-

hypergroups and construct a functor from this category to the category of digraphs. Finally,

we give an application the Cayley graph of a hypergroupoid to a social network.

1. Introduction

Algebraic hyperstructure is one branch of algebra which deals with to structures endowed
with multivalued operations. More precisely, a hyperoperation ◦ on a non-void set H is a
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function from the Cartesian product H × H to the powerset P (H) of H. Hyperstructure
came into being through the notion of the hypergroup. The hypergroup was introduced by
F. Marty in 1934, during the 8th congress of the Scandinavian Mathematicians [15] and it has
been developed by many authors in viewpoint of theory and applications [4, 5]).

Let H be a non-empty set and let P∗(H) be the set of all non-empty subsets of H. A
hyperoperation on H is a map ◦ : H × H −→ P ∗(H) and the couple (H, ◦) is called a
hypergroupoid. For non-empty subsets A and B of H, A ◦B =

∪
a∈A,b∈B a ◦ b.

A hypergroupoid (S, ◦) is called a semihypergroup if for x, y, z of S we have (x ◦ y) ◦ z =

x ◦ (y ◦ z), which means that
∪

u∈x◦y u ◦ z =
∪

v∈y◦z x ◦ v.
A semihypergroup (H, ◦) is called a hypergroup if for all x ∈ H, we have x ◦ H = H ◦

x = H. In general a hyperalgebraic system is a set together with a family of a finitary
hyperoperations(for more details see [2]).

Let H be a hypergroup(resp. semihypergroup) and the relation β∗ is the smallest equiv-
alence relation on H, such that the quotient space H/β∗ = {β∗(a)|a ∈ H} together with
hyperoperation ⊗ defined by

β∗(a)⊗ β∗(b) = β∗(c), ∀c ∈ a ◦ b,

is a group(resp. semigroup). The group (H/β∗,⊗) is called fundamental group of (H, ◦)
and the relation β∗ is called the fundamental relation on H. This relation plays an important
role to the study of hypergroup theory. This relation was introduced by Koskas [13] and has
been studied by Corsini [4]. Freni in [7] characterized β∗ as follows:

If U denotes the set of all finite products of the elements of H, then the relation β is we
denoted on H by xβy if and only if {x, y} ⊆ u for some u ∈ U . Then β∗ = β. Moreover, if we
denote the equivalence class of a ∈ H by β(a), then (H/β∗,⊙) is a group, where

β(a)⊙ β(b) = β(c), ∀ c ∈ β(a).β(b).

Let H be a semihypergroup. For every integer n > 0, and s ∈ H, we get the powers of
s : s1 = s, sn+1 = sn ◦ s ⊂ H.

Using the original definition of cyclic semihypergroup as it can be seen in [18] as well, we
give the following definitions.

A hypergroup H is called cyclic, if H = h1 ∪ h2 ∪ ... ∪ hn ∪ ..., for some h ∈ H.
If there exists an integer n > 0, the minimum one with the following property:

H = h1 ∪ h2 ∪ ... ∪ hn,

then H is called cyclic with finite period and call h the generator of H with period n.
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The definition of Cayley graph was introduced by Arthur Cayley in 1878 to explain the
concept of abstract groups being described by a set of generators. In the last 50 years, the
theory of Cayley graphs has been grown into a substantial branch in algebraic graph theory
[12].

The concept of generalized Cayley graphs of semigroups was first introduced in [20], where
some fundamental properties of generalized Cayley graphs of semigroups were studied. Let
G be a semigroup, and let S be a nonempty subset of G. The Cayley graph Cay(G,S) of G
relative to S is defined as the graph with vertex set G and edge set E(S) consisting of those
ordered pairs (x, y), such that sx = y for some s ∈ S [11]( Also, for more details see [10, 21, 9]).

The purpose of this paper is the study Cayley graph of a semihypergroup(or a hypergroup)
H and its application to social networks. This paper has been written in 6 sections. In Section
2, we introduce Cayley graph of a semigroup and investigate its basic properties. Also, by
some examples of Cayley graphs of semihypergroups, we show that the behavior of a of Cayley
graphs of a semigroup is different to Cayley graphs of a semigroup. In Section 3, we study
Hamiltonian Cayley graphs of semihypergroups and obtains their properties. In Section 4,
some kinds of Cayley graphs of a semihypergroup with the certain properties are considered
and analogous algebraic properties of their semihypergroup are investigated.

In Section 5, we introduce SHC, category of semihypergroups with connection sets and
defining a functor CayH from SHC to category of digraphs, which associate to each semihy-
pergroup its associative Cayley graph

Finally, in Section 6, an application of Cayley graph of hypergroupoids in social networks
are given. Also, an algorithm is designed to calculate the number spreading of advertising
before seeing certain a person in a social network.

2. Cayley graph of a semihypergroup

Cayley graphs of a semihypergroup have been studied because they reflect the structure of
a semihypergroup. Finite Cayley graphs of semigroups Cay(S,A), where A is a one-element
has been characterized by B. Zelinka in [20]. In this paper, we introduce Cayley graphs of
semihypergroups, also we state and prove some related results of these graphs.

Let (H, ◦) be a semihypergroup, and A be its subset. The graph CayH(H,A) is a directed
graph whose vertices are elements of H and in which there is a directed edge from a vertex u

into a vertex v if and only if v ∈ u ◦ a, where a ∈ A.
if A = {a} is a one-element set, then instead of CayH(H,A) we shall write simply

CayH(H, a).
The properties of Cayley graph of a semihypergroup is completely different to the Cayley

graph of a semigroup.
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Figure 1. CayH(H, 5)

For example in [20], every Cayley graph of a semigroup Cay(G, a) has the property that
the output degree of each of its vertices is 1, but example 2.1 shows that it does not hold for
Cayley graph of a semihypergroup as CayH(H, a).

Example 2.1. According to Example 3.6 of [8], (H; ◦) is a hypergroup, where ◦ is defined as
table 1. Cayley graph CayH(H, 5) shows in figure 1. It is clear that output degree vertices 3

and 7 of CayH(H, 5) is equal to 2.

◦ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 0.4 5 6 7 0,4

2 2 3 0,4 1,5 6 7 0,4 1,5

3 3 0,4 1,5 2,6 7 0,4 1,5 2,6

4 4 5 6 7 0 1 2 3

5 5 6 7 0,4 1 2 3 0,4

6 6 7 0,4 1,5 2 3 0,4 1,5

7 7 0,4 1,5 2,6 3 0,4 1,5 2,6
Table 1. (H, ◦) is a semihypergroup.

We have the following result for Cayley graphs of a semihypergroups with connection to
singletons.

Lemma 2.2. Let (H, ◦) be a finite semihypergroup.
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(i) Let a ∈ H, and let CayH(H, a) be Cayley graph of H with connection set {a}. if
u ∈ V (CayH(H, a)), uv, uv′ ∈ E(CayH(H, a)), then vβv′.

(ii) if vβv′, then there exists a ∈ H, such that v and v′ are two output vertices of CayH(H, a)

such that has a common vertex.

Proof. (i) Suppose uv, uv′ are edges in Cayley graph CayH(H, a), then v ∈ u ◦ a, v′ ∈ u ◦ a.
So {v, v′} ⊆ u ◦ a. It follows that vβv′.

(ii) Let vβv′. Then there exist u, a ∈ H, such that {v, v′} ∈ u ◦ a. By definition, two edges
(u, v) and (u, v′) are members of the set of edges in CayH(H, a).

Every Cayley graph of Cay(G, a) a semigroup G has the property that the cardinal numbers
of the set of edges of the graph Cay(G, a) is equal to the cardinal number of vertices, but this
does not hold for e Cayley graph CayH(S, a) of a semihypergroup.

Lemma 2.3. Let (H, ◦) be a finite semihypergroup and a ∈ H. Consider CayH(H, a) as
Cayley graph of a semihypergroup of H with the connection set {a}. Then we have

|E(CayH(H, a))| =
∑
x∈H

|x ◦ a|,

where, |X| denotes the cardinal number of set X.

Proof. Output vertices in the edge of the input vertex x are members of x ◦ a. Then the
number of output edges of any vertex x is equal to the number of x ◦ a. It follows that the
number of edges of the Cayley graph CayH(H, a) is equal to the sum |x ◦ a|, where x ∈ H.

Lemma 2.4. Let (H, ◦) be a finite semihypergroup and A ⊆ H, and let CayH(H,A) be the
Cayley graph of H with connection set A. Then

|E(CayH(H,A))| =
∑
x∈H

|x ◦A|.

Proof. Output vertices in the edge of the input vertex x are the members of x ◦ A. Then the
number of output edges of any vertex x is equal to the number of x ◦ A. It follows that the
number of edges of the Cayley graph CayH(H,A) is equal to the sum |x ◦A|, where x ∈ H.
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Figure 2. The graph CayH(H, 3)

3. Hamiltonian Cycles in Cayley graphs

Since the 1984 survey of results on Hamiltonian cycles and paths in Cayley graphs by Witte
and Gallian [19], many advances have been made.

Much of the focus of research has been directed towards proving special cases of the following
conjecture made by many people.

Conjecture [6]: Every connected Cayley graph with more than 2 vertices is Hamiltonian.

In the seque, we study the properties of Cayley graphs of semi-hypergroups with Hamiltonian
cycle.

Example 3.1. Let (H; ◦) be the hypergroup in Example 2.5. Then the Cayley graph
CayH(H, 3) is shown in figure 2. This graph has a Hamiltonian cycle which is as follows:

0 → 3 → 2 → 1 → 4 → 7 → 6 → 5 → 0.

But this Hamiltonian cycle is not unique, because there is another Hamiltonian cycle as
follows:

0 → 3 → 2 → 5 → 4 → 7 → 6 → 1 → 0.

Note that it is not true that every Cayley graph of a semihypergroup H with a connected
subset, necessarily contains a Hamiltonian cycle. Because: It is obvious that the Cayley
graph CayH(H, 2) shown in figure 3 has not any Hamiltonian cycles, although H is a cyclic
semihypergroup with 3 as its generator.
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Figure 3. The Cayley graph CayH(H, 2)

A conjecture naturally gives rise: there is a relationship between Hamiltonian cycles and
generators of cyclic semihypergroups. In the following we give some of this connections.

Theorem 3.2. Let H be a finite semihypergroup and | H |= n, A ⊆ H. If CayH(H,A) is a
Hamiltonian graph, then we have

H = A ∪A2 ∪A3 ∪ · · · ∪ An+1.

Proof. By hypothesis CayH(H,A) has a Hamiltonian cycle. Then there exists a cycle as
follows:

a → a1 → a2 → ... → an−2 → an−1 → a,

then by definition it follows that:

∃x1 ∈ A, a1 ∈ a ◦ x1 ⊆ A ◦A = A2,

∃x2 ∈ A, a2 ∈ a1 ◦ x2 ⊆ A ◦A2 = A3,

∃x3 ∈ A, a3 ∈ a2 ◦ x3 ⊆ A ◦A3 = A4,

...

∃xn−1 ∈ A, an−1 ∈ an−2 ◦ xn−1 ⊆ An−1 ◦A = An,
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Table 2. (H; ◦) is a hypergroup.

◦ a b c d

a b a, c, d b b

b a, c, d b a, c, d a, c, d

c b a, c, d b b

d b a, c, d b b

a b

c

d

Figure 4. Cayley graph CayH(H, a)

∃xn ∈ A, a ∈ an−1 ◦ xn ⊆ An ◦A = An+1.

Since for every x ∈ H, an i such that x = ai, so x ∈ Ai+1. Therefore

H = A ∪A2 ∪ ... ∪An ∪An+1.

Corollary 3.3. Let H be a semihypergroup and a ∈ H. If CayH(H, a) is a Hamiltonian
graph, then H is cyclic semihypergroup with a generator a.

The converse of above theorem is not true, that is it is not true that every Cayley graph
associated to a cyclic semihypergroup has not a Hamiltonian graph.

Example 3.4. According to an example V of [16], (H; ◦) is a hypergroup, where ◦ is defined
in table 3.4. Consider the Cayley graph CayH(H, a) in figure 3.4.

Clearly, this graph has not any Hamiltonian cycle, although H is a cyclic semihypergroup
with a generator a.
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A non-empty subset A of a semihypergroup (H, ◦) is called sub-semihypergroup of H if
A ◦A ⊆ A and it is called a complete part of H if for all n ≥ 2 and for all (x1, x2, ..., xn) ∈ Hn

the following implication holds:

n∏
i=1

xi ∩A ̸= φ ⇒
∏
i=1

xi ⊆ A.

The complete closure of A in H is the intersection of all complete parts which contains A and
it is denoted by C(A). Recall that a semihypergroup (H, ◦) is complete if for all (x, y) ∈ H2,
C(x ◦ y) = x ◦ y.

Theorem 3.5. [16] if H is cyclic and complete semihypergroup, then H is hypergroup .

Corollary 3.6. Let H be complete semihypergroup, a ∈ H. If CayH(H, a) is a Hamiltonian
graph, then H is cyclic hypergroup and a is a its generator.

Proof. According to 3.3, H is a cyclic semihypergroup. So H is a complete semihypergroup.
Furthermore, H is a hypergroup by 3.5.

4. Special Cayley graphs

Connected Cayley graphs of semihypergroups:
The notion of paths and semi-paths is used to describe the connectedness of a digraph as

follows:
Let D be a digraph and let u and v be two distinct vertices of D. The digraph D is strongly

connected if the paths u−v and v−u exist. Connected Cayley graphs of a semigroup have been
studied. Interesting results have been found. For instance, the paper [17] includes one section
devoted to the study of strongly connected Cayley graphs of a semigroup. The condition given
in the introduction determines whether a Cayley graph of a group is connected. But these
results does not hold for semihypergroups instead of semigroups.

In this Section, we give a condition to determine whether a Cayley graph of a semihypergroup
is strongly connected.

Let (H, ◦) be a semihypergroup and A = {a1, a2, ..., an}. Then

A2 =
∪

1≤i≤n,1≤j≤
ai ◦ aj ,

A3 =
∪

1≤rj≤n

3∏
j=1

arj

...



38 Alg. Struc. Appl. Vol. 7 No. 2 (2020) 29-49.

An =
∪

1≤rj≤n

n∏
j=1

arj

then we agree:

[A] =

n∪
i=2

Ai

According to Corollary 3.2. in [17], A Cayley graph Cay(S,A) of a semigroup S is strongly
connected if and only if the linear equation ux = v in the variable x has a solution in ⟨A⟩ for
all u, v ∈ S.

Example 4.1. Let H be the semihypergroup in example 2.1, then for A = {2}, [A] =

{0, 2, 4, 6}. According example 3.1, CayH(H, 2) is not strongly connected and the path be-
tween vertices 1 and 2 does not exist. It is easy to see that the equation 1 ∈ 0 ◦ x has not a
solution in [A]. But if we consider the connected graph CayH(H, a) in example 3.4, then for
A = {a}, [A] = H and for v, u ∈ H the equation v ∈ u ◦ x in the variable x has a solution in
[A].

So the last example, induce the following conjecture:
An strongly connected Cayley graph CayH(H,A) is related to the solution of the equation

of the form v ∈ ux in the variable x in ⟨A⟩ for all u, v ∈ H.
At the following we show that this conjecture is true in for semihypergroups.

Theorem 4.2. Let (H, ◦) be semihypergroup and u and v be distinct elements of H. A path
from u to v in CayH(H,A) exists if and only if the equation v ∈ u ◦ x in the variable x has a
solution in [A].

Proof. Let u = s0, s1, . . . , sn = v be a path. By definition, there are elements a1, a2, . . . , an of
A, such that si ∈ si1 ◦ ai for i = 1, 2, . . . , n. This proves v ∈ u ◦ (a1 ◦ a2 ◦ . . . ◦ an), and there
exist x ∈ a1 ◦ a2 ◦ · · · ◦ an ⊆ [A], such that x is a solution of equation v ∈ u ◦ x.

Conversely, suppose there exists x0 ∈ [A] for which v ∈ u ◦ x0. Since x0 ∈ [A], we can write
x0 ∈ a1 ◦ a2 ◦ · · · ◦ ar, where ai ∈ A. Then

v ∈ u ◦ x0 ⊆ u ◦ (a1 ◦ a2 ◦ · · · ◦ ar) = (u ◦ a1 ◦ a2 ◦ · · · ◦ ar−1) ◦ ar.

Hence there exist s1 ∈ u ◦ (a1 ◦ a2 ◦ · · · ◦ ar−1, such that v ∈ s1 ◦ ar, so (s1, v) is edges in
CayH(H,A). If we continue this process, we obtain the elements s1, . . . , sr ∈ H, such that
(si, si−1) are edges in CayH(H,A). Therefore, there exists a path from u to v in CayH(H,A),
as desired.
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Corollary 4.3. Let (H, ◦) be a semihypergroup. A Cayley graph CayH(H,A) is strongly
connected if and only if the equation v ∈ u ◦ x in the variable x has a solution in [A] for all
u, v ∈ H.

Proof. It is enough we show that only a solution for u ∈ u ◦ x there exists for u ∈ H. Since H

is a nontrivial semihypergroup, there is an element w ̸= u of H, such that the path u−w and
the path w − u exist. Hence, w ∈ u ◦ x0 and u ∈ w ◦ y0 for some x0, y0 ∈ [A]. So

u ∈ w ◦ y0 ⊆ (u ◦ x0) ◦ y0 = u ◦ (x0 ◦ y0)

Therefore, there is h ∈ x0 ◦ y0, such that u ∈ u ◦ h. This complete the proof.

Undirected graph:
A digraph D = (V,E) is said to be undirected if and only if, for every (u, v) ∈ E, the edge

(v, u) belongs to E, too.

Example 4.4. The graph CayH(H, a) in example 3.4 is an undirected graph. It is easy to
see that H = a2 ◦H.

Theorem 4.5. Let (H, ◦) be a semihypergroup and a ∈ H and all vertices of CayH(H, a) have
a degree greater than 0. If CayH(H, a) is an undirected graph, then H = H ◦ a2

Proof. For x ∈ H, So there is y ∈ H that (x, y) ∈ E(CayH(H, a)). By definition of undirected
graph, one has

(y, x) ∈ E(CayH(H, a)),

thus

y ∈ x ◦ a, x ∈ y ◦ a.

So, we have

x ∈ y ◦ a ⊆ (x ◦ a) ◦ a = x ◦ (a ◦ a) ⊆ H ◦ a2.

Therefore, H ⊆ H ◦ a2. This complete the proof.

Theorem 4.6. Let (H, ◦) be a semihypergroup and A ⊆ H and all vertices of CayH(H,A)

have a degree greater than 0. If CayH(H,A) is an undirected graph, then H = H ◦A2.
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Proof. For x ∈ H, there exists y ∈ H such that (x, y) ∈ E(CayH(H,A)). By definition of an
undirected graph we have

(y, x) ∈ E(CayH(H,A)).

Therefore,

∃z ∈ A, x ∈ y ◦ z ⊆ y ◦A,

∃z′ ∈ A, y ∈ x ◦ z′ ⊆ x ◦A.

So, it is concluded that

x ∈ y ◦A ⊆ (x ◦A) ◦A = x ◦ (A ◦A) ⊆ H ◦A2.

It follows that H ⊆ H ◦A2.
This complete the proof.

Eulerian graph:
A digraph D is said to be Eulerian if it contains a closed walk which traverses every arc of

D exactly once.

Example 4.7. The graph CayH(H, a) in example 3.4 is an Eulerian graph. It is easy to see
that∑

u∈H |{z|u ∈ z ◦A}| = 6 and is equal to The number of the edges of the graph CayH(H, a).

Theorem 4.8. A digraph has a Euler cycle if and only if it is connected and indegree of each
vertex is equal to its output degree[3].

Theorem 4.9. Let CayH(H,A) be a Eulerian graph. Then
(i) for all u ∈ H, |u ◦A| = |{z|u ∈ z ◦A}|;
(ii) |E(CayH(H,A))| =

∑
u∈H |{z|u ∈ z ◦A}|.

Proof. (i) Clearly, the output vertices in the edge of the input vertex u are members of u ◦A.
Then the number of output edges of any vertex u is equal to the number of u ◦ A. On the
other hands, u is the edge of output vertex such that there exist z ∈ H, u ∈ z ◦A. According
to the theorem4.8, for an Eulerian graph the indegree of each vertex is equal to its output
degree. Therefore, |u ◦A| = |{z|u ∈ z ◦A}|.

(ii) is an immediate consequence of part (i)a and proposition 2.4.
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Complete digraph:
Complete digraphs are digraphs in which every pair of vertices is connected by a bidirectional

edge.

Theorem 4.10. Let (H, ◦) be a semihypergroup and A ⊆ H. If CayH(H,A) is a complete
digraph, then for all x ∈ H, H = x ◦A.

Proof. Let CayH(H,A) be a complete digraph, then every pair of vertices is connected by a
bidirectional edge. So for x, y ∈ H, there exists a ∈ A, such that y ∈ x◦a. Therefore, y ∈ x◦A,
then H ⊆ x ◦A.

Cartesian Products:
Let (H1, ∗) ,(H2, ⋆) be semihypergroups. We define a binary hyperoperation on Cartesian

products H1 ×H2 = {(x, y)|x ∈ H1, y ∈ H2}, as follows for all (x, y), (x1, y1) ∈ H1 ×H2:

(x, y)⃝ (x1, x2) = {(r, s)|r ∈ x ∗ x1, s ∈ y ⋆ y′},

Theorem 4.11. Let (H1, ∗) and (H2, ⋆) be semihypergroups, A1 ⊆ H1, A2 ⊆ H2 and x, x′ ∈
H1, y, y

′ ∈ H2. There is an edge from (x, y) to (x′, y′) in Cayley graph CayH(H1×H2, A1×A2)

if and only if there are edges from x to x′ on Cayley graph CayH(H1, A1) and y to y′ on Cayley
graph CayH(H2, A2).

Proof. Suppose there is an edge from (x, y) to (x′, y′), so there is (s, t) ∈ A1 ×A2, such that

(x′, y′) ∈ (x, y)⃝ (s, t).

Then there edges s ∈ A1 that x′ ∈ x ∗ s and t ∈ A1 that y′ ∈ y ⋆ t. It followers that
There are edge from x to x′ on the Cayley graph CayH(H1, A1) and y to y′ on Cayley graph
CayH(H2, A2).

5. The CayH functor

In this section we briefly present some basic results which describe the construction of Cayley
graphs starting from semihypergroups with given connection sets via using the category toll (
for more details of application of category theory in hyperstructures refer to [1].

Definition 5.1. Let (H1, ◦) and (H2, •) be semihypergroups hypergroups). A function f :

H1 −→ H2 is called an inclusion homomorphism if it satisfies the following conditions:

f(x ◦ y) ⊆ f(x) • f(y) for all x, y ∈ H,



42 Alg. Struc. Appl. Vol. 7 No. 2 (2020) 29-49.

and f is a strong(or good)homomorphism if

f(x ◦ y) = f(x) • f(y) for all x, y ∈ H.

Consider the category SHC of semihypergroups with connection sets, that is its objects is
as follows:

ObSHC = {(S,C)|S is a semihypergroupC ⊆ S}.

For (H,C), (H ′, D) ∈ ObSHC,its morphisms set is as follows:

MorphSHC((H,C), (H ′, D)) = {f |f : H → H ′ is a strong homomorphism with f |C : C → D}.

Then ObSHC together with MorphSHC is a category, where MorphSHC denotes the
class of all morphism sets in SHC.

Let D denotes the category of digraphs, which may have loops and multiple edges, with
graph homomorphisms.

The Cayley graph of a semihypergroup (H, ◦) with a connection set C ⊆ H, as
CayH(H,C) = (H,E), where

E = {(s, z)| ∃c ∈ C, z ∈ s ◦ c}.

Theorem 5.2. Let (H, ◦) and (H ′, •) be semihypergroups, and let C and D be subsets of H

and H ′, respectively. Then the rule CayH : SHC → D given by

(H ′, D) CayH(H ′, D) f(s) ∈ H ′

(H,C) CayH(H,C) s ∈ H

f CayH(f)

for any f ∈ SHC((H,C), (H ′, D)) and s ∈ H is a covariant functor.

Proof. First, we show that CayH produces a homomorphism in D. Suppose that (s, z) is
an edge in CayH(H,C), where s ∈ H, ∃c ∈ C such that z ∈ s ◦ c. As f(z) ∈ f(s ◦ c) =

f(s) • f(c), then (f(s), f(z)) is edge in CayH(H ′, D) for f ∈ SHC((H,C), (H ′.D)). It follows
that CayH(f) is a homomorphism from CayH(H,C) into CayH(H ′, D).

At this stage we verify two properties of a covariant functor.
(1) We have
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CayH(id(H,C) = idCayH(H,C),

since CayH(idS)(s) = id(s) = s = idCay(S,C)(s).
(2) For f ∈ SHC((H,C), (H ′, D)) and g ∈ SHC((H ′, D), (H ′′, E)), we have

CayH(gf)(s) = gf(s) = g(f(s)) = CayH(g)CayH(f)(s),

for every s ∈ H. So CayH(gf) = CayH(g)CayH(f).

Definition 5.3. Consider the categories C and D. A covariant functor F : C → D is said to
be:

(1) faithful if the mapping

MorC(A,A
′) −→ MorD(F (A), F (A′)),

is injective for all A,A′ ∈ C;
(1) full if the mapping

MorC(A,A
′) −→ MorD(F (A), F (A′)),

is surjective for all A,A′ ∈ C.

Corollary 5.4. The functor CayH : SHC −→ D is faithful.

Proof. Let f, g ∈ SHC(H,C), (H ′, D)) be such that CayH(f) = CayH(g), hence for any s ∈ H

f(s) = g(s), then g = f . which implies that that the functor
CayH : SHC −→ D is faithful.

From the definition of the CayH functor and the fact that CayH is covariant and faithful,
we get the following result.

Definition 5.5. A morphism f ∈ C(A,B) with A,B ∈ C is called an isomorphism if there
exists a morphism g ∈ C(B,A) with the properties that f ◦ g = idB and g ◦ f = idA.

A morphism f ∈ C(A,B) with A,B ∈ C is called an monomorphism if it is left cancelable,
i.e. g, h ∈ C(C,A) with f ◦ g = f ◦ h, we get g = h.

A morphism f ∈ C(A,B) with A,B ∈ C is called an epimorphism if it is right cancelable,
i.e. g, h ∈ C(B,C) with g ◦ f = h ◦ f we get g = h.
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Definition 5.6. Let C and D be categories. Let F : C → D be an assignment of a unique
object F (A) ∈ D to an object A ∈ C and a unique morphism F (f) in D to a morphism
f : A → A′ in C. We formulate the following two pairs of conditions, (1) and (2):

(1) F (idA) = idF (A) for A ∈ C; we say F preserves identities.
(2) F (f) : F (A) −→ F (A′) and F (f2f1) = F (f2)F (f1) for f1 ∈ C(A1, A2) and f2 ∈

C(A2, A3), where A1, A2, A3 ∈ C, we say that F preserves the composition of morphisms.
If F satisfies (1) and (2), we call F a covariant functor.

Corollary 5.7. The functor CayH preserves isomorphism.

Proof. Suppose (H,C), (H ′, D) ∈ SHG and f : (H,C) −→ (H ′, D) is isomorphism. Then
there is g : (H ′, D) −→ (H,C), such that

f ◦ g = idH′ ,g ◦ f = idH .

Also, we verify that

CayH(f) ◦ CayH(g) = idCayH , CayH(g) ◦ CayH(f) = idH ,

for any s ∈ H:

CayH(g) ◦ CayH(f) = CayH(g)(f(s)) = g ◦ f(s) = idH(s) = s.

Similarly, we obtain CayH(f) ◦ CayH(g) = idCayH . Therefore, the functor CayH preserves
isomorphisms.

Corollary 5.8. The functor CayH preserves monomorphisms.

Proof. Suppose (H,C), (H ′, D) ∈ SHG and f : (H,C) −→ (H ′, D) is monomorphism. Then
for every g, h : (H ′, D) −→ (H,C), such that

f ◦ g = f ◦ h = idH =⇒ g = h,

Thus

CayH(f) ◦ CayH(g) = CayH(f) ◦ CayH(h).

By definition of functor, we have

CayH(f ◦ g) = CayH(f ◦ h).
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Since the functor CayH is faithful, so f ◦g = f ◦h. Then g = h, because f is monomorphism.
Therefore, CayH(g) = CayH(h). It follows that the functor CayH preserves monomorphisms.

Corollary 5.9. The functor CayH preserves epimorphisms.

Proof. Suppose (H,C), (H ′, D) ∈ SHG and f : (H,C) −→ (H ′, D) is epimorphism. Then for
every g, h : (H ′, D) −→ (H,C), such that

g ◦ f = h ◦ f = idH =⇒ g = h

Then we have

CayH(g) ◦ CayH(f) = CayH(h) ◦ CayH(f).

Then by definition of a functor, we obtain

CayH(g ◦ f) = CayH(h ◦ f).

As the functor CayH is faithful, then g ◦ f = h ◦ f . Then g = h, because f is epimorphism.
Therefore, CayH(g) = CayH(h). It follows that the functor CayH preserves epimorphisms.

6. An application of Cayley graph to social networks

After expanding social networks and its influence on society, it can easily use social network
for advertising. But one of the common challenges to analyzing these networks is to determine
the least number of members starting to post an advertising. In this section we answer to the
following questions:

A) Is the number of people selected for advertising enough at first?
B) How many times after republishing an advertisement everyone in the social networks are

getting it?
To answer to these questions first we define a hyperoperation is defined on a social networks,

and then the Cayley graph associated to this hypergroupoid related to the social network are
being constructed. Also, we introduce two algorithms to finding the least number of members
starting to post an advertising in a social network.

Let H be all members a social network set. We define ⊙ on H, for a, b ∈ H

a⊙ b = {Common friends a and b},

(H,⊙) is a hypergroupoid, but not nor a hypergroup or a hypersemigroup.
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The goal is to finding a number of members start to advertisers. Denote the first advertisers
A. Suppose that the advertisers spread it to all friends and friends’ friends also do this. With
such a strong condition, if one does not receive this advertising, there is not enough advertisers
in the first place.

Definition 6.1. Let (H, ◦) be a hypergroupoid an A be a subset of H. The graph CayP (H,A)

is a directed graph whose vertices are elements of H and in which there is a directed edge from
a vertex u into a vertex v if and only if v ∈ u ◦ a, where a ∈ A.

Proposition 6.2. Let (H,⊙) be a social network groupoid and sub A be the set of advertisers.
For a graph CayP (H,A) we have the following properties, for x, y ∈ H:

(a): If (x, y) ∈ E(CayP (H,A), then y is common friend’s x and members of set A.
(b): Output degree of vertex x is equal to the common friends’ x and member of set A.
(c): If output degree of a vertex x is zero, then x has not common friend with members of set

A.
(d): If output degree of a vertex x is non-zero, then x has seen the advertising after the its

second publication.
(e): Output degree of vertex x is equal to the maximum number of get advertising in second

its publication.
(f): Indegree of vertex x is equal to the number of friends.
(g): If indegree of a vertex x is non-zero, then x is friend with a member of A.
(h): If indegree of a vertex x is non-zero, then x is the first person who has seen the ads.

According to the proposition 6.2, vertices with non-zero degree inputs members of a social
network that receive advertising from set A, and they can republish it. Set that vertices with
non-zero input degree in CayP (H,A) is represented by I. Also, Vertices with non-zero output
degree Set in CayP (H,A) is represented by O. Members of the set O are members of a social
network that have seen an advertising after publishing it twice.

After replacing set A with the union of A and I, CayP (H,A) is drawn again. This process
can be continued, and adding members of the set A and drawing Cayley graph again, until
members of the set A do not increase by replacing set A with the union of A and I. In
this level, if O = H, this advertising has been seen by everyone on the network, otherwise
members of the set are not enough for the advertisement. This general process can be seen
in Algorithm 1. This algorithm checks that the members of the set in first is sufficient for
universal advertising.

By making small changes to the Algorithm 1 and counting the number of repeated steps
until to join a certain person in the set O, a new algorithm can be found. Algorithm 2 is
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Algorithm 1 Universal advertising
step 1: Set H to all members of a social network set.

step 2: Set A to Set of first advertisers.

step 3: Draw set CayP (H,A).

step 4: Set I to all vertices that has non-zero input degree. Set O to all vertices that non-zero

output degree.

step 5: B = A ∪ I

step 6: If A ̸= B, then A = B and go to step 3.

step 7: If O ̸= H, then this advertising is not universal advertising.

designed to answer the second question. It determines the number of spreading of advertising
before seeing certain person x /∈ A.

Algorithm 2 Number spreading of advertising
step 1: Set H to all members of a social network set.

step 2: Set A to Set of first advertisers.

step 3: i = 1

step 4: Draw set CayP (H,A).

step 5: Set I to all vertices that have non-zero input degree. Set O to all vertices that non-

zero output degree.

step 6: If x ∈ I, then s = i and go to step 10

step 7: If x ∈ O, then s = i+ 1 and go to step 10

step 8: B = A ∪ I

step 9: If A ̸= B, then A = B and i = i+ 1 and go to step 4, else s = −1

step 10: If s = −1, then x does not see these advertising, otherwise x sees this advertising

before s times of the advertising spread.

7. Conclusion

The Cayley graph of a semihypergroup is presented and the properties of this graph was
studied. By some examples it was shown that the behavior of this Cayley graph is different from
the Cayley graph of a semigroup. Also, Hamiltonian Cayley graphs was studied. Furthermore,
some of kinds of Cayley graphs with certain properties has been studied and the properties of
semihypergroups associated to these graphs was determined.

Also, a connection between category of semihypergroups and category of digraphs was es-
tablished. Finally, two algorithms was introduced and used them to a social network. At the
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following in Table 3 the connection between algebraic properties of a semihypergroup and it’s
Cayley graph has been summarized.

Properties Cayley graphs CayH(H,A) Properties semihypergroup H

Hamiltonian graph H = A ∪A2 ∪ · · · ∪ An+1

Connected equation v ∈ u ◦ x in the variable x has a solution in [A]

undirected H = H ◦A2

Complete digraph ∀x ∈ H : H = x ◦A

Table 3. Properties Cayley graphs.
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