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ON GRADED HYPERRINGS AND GRADED HYPERMODULES

FARKHONDEH FARZALIPOUR AND PEYMAN GHIASVAND∗

Abstract. Let G be a monoid with identity e. In this paper, first we introduce the notions

of G-graded hyperrings, graded hyperideals and graded hyperfields in the sense of Krasner

hyperring R. Also, we define the notion of a greded R-hypermodules and some examples are

presented. Then we investigate graded maximal, graded prime and graded primary hyper-

ideals of a graded hyperring R. Finally, we study graded maximal, graded prime and graded

primary subhypermodules of a graded R-hypermodule M and some interesting results on

these concepts are given.

1. Introduction

Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In
a classical algebraic structure, the composition of two elements is an element, while in an
algebraic hyperstructure, the composition of two elements is a set. The hypergroup notion
was introduced in 1934 by a French mathematician F. Marty [13], at the 8th Congress of
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Scandinavian Mathematicians. The notion of hyperrings was introduced by M. Krasner [11].
Prime, primary, and maximal subhypermodules of a hypermodule were discussed by M. M.
Zahedi and R. Ameri in [18]. Also, R. Ameri et al introduced Krasner (m,n)-hyperrings in [2]
and in [3] studied prime and primary subhypermodules of (m,n)-hypermodules. The principal
notions of algebraic hyperstructure theory can be found in [1, 5, 6, 7, 8, 15, 17]. Furthermore,
the study of graded rings arises naturally out of the study of affine schemes and allows them
to formalize and unify arguments by induction [16]. However, this is not just an algebraic
trick. The concept of grading in algebra, in particular graded modules is essential in the study
of homological aspect of rings. Much of the modern development of the commutative algebra
emphasizes graded rings. Graded rings play a central role in algebraic geometry and commuta-
tive algebra. Gradings appear in many circumstances, both in elementary and advanced level.
In recent years, rings with a group-graded structure have become increasingly important and
consequently, the graded analogues of different concepts are widely studied (see [4], [9], [10],
[12] and [14]). Theory of greded hyperrings and greded hypermodules can be considered as an
extension theory of hyperrings and hypermodules. In addition, graded hyperrings and graded
hypermodules are extensions of graded rings and graded modules. In this paper, we define
the notions of G-graded hyperrings, graded hyperideals and graded hyperfields in the sense
of a Krasner hyperring R, and also introduce greded R-hypermodules. Then, some related
results have been achieved and some respective examples have been provided in the following
sections.

2. Preliminaries

Definition 2.1. [11] Let H be a nonempty set and P∗(H) denotes the set of all nonempty
subsets of H. If + : H ×H −→ P∗(H) is a map such that the following conditions hold, then
we say that (H,+) is a canonical hypergroup.

(i) for every x, y, z ∈ H, x+ (y + z) = (x+ y) + z;
(ii) for every x, y ∈ H, x+ y = y + x;
(iii) there exists 0 ∈ H such that 0 + x = {x} for every x ∈ H;
(iv) for every x ∈ H there exists a unique element x′ ∈ R such that 0 ∈ x+x′, it is denoted

by −x;
(v) for every x, y, z ∈ H, z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y.

Definition 2.2. Let A ⊂ H. Then A is called a subhypergroup of H if 0 ∈ H and (A,+) is
itself a hypergroup.

Definition 2.3. [11] A Krasner hyperring is an algebraic hyperstructure (R,+, ·) which sat-
isfies the following axioms:
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(1) (R,+) is a canonical hypergroup;
(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e., x ·0 = 0 ·x = 0;
(3) the operation “ ·” is distributive over the hyperoperation “+”, which means that for

all x, y, z of R we have:

x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z.

A Krasner hyperring (R,+, ·) is called commutative with identity 1 ∈ R; if we have

(a) xy = yx for all x, y ∈ R,
(b) 1x = x1 for all x ∈ R.

Example 2.4. [7] Let (G, ·) be a finite group with m elements, m > 3, and define a hyperad-
dition and a multiplication on H = G ∪ {0}, by:

a+ 0 = 0 + a = {a} for all a ∈ H,
a+ a = {a, 0} for all a ∈ G,
a+ b = b+ a = H − {a, b} for all a, b ∈ G, a 6= b,
a⊗ 0 = 0 for all a ∈ H,
a⊗ b = a · b for all a, b ∈ G.

Then (H,+,⊗) is a hyperring.

Definition 2.5. Let (R,+, ·) be a hyperring and S ⊂ R. Then S is said to be a subhyperring
of R if (S,+, ·) is itself a hyperring.

Definition 2.6. A subhyperring I of a hyperring R is a left (right) hyperideal of R if rx ∈
I(xr ∈ I) for all r ∈ R, x ∈ I. I is called a hyperideal if I is both a left and a right hyperideal.

Definition 2.7. The direct sum of a family of subhypergroups {Ri|i ∈ I} of R, denoted by
R =

⊕
i∈I Ri, is the set⊕

i∈I Ri = {x | x ∈
∑

i∈I xi; xi 6= 0 for at most finitely many i ∈ I}

Definition 2.8. Let (R,+, ·) be a hyperring. We say that R is the direct sum of subhyper-
groups {Ri}i∈I of R and we denote R =

⊕
i∈I Ri, if

(i) for every i, j ∈ I; Ri
∩∑

i ̸=j Rj = {0},
(ii) for any x ∈ R, there exist unique elements xi ∈ Ri such that x ∈

∑
i∈I xi.

Definition 2.9. Let (M,+) be a canonical hypergroup and (R,+, ·) be a Krasner hyperring
with identity. M is a left hypermodule over hyperring R if there exists a map

· : R×M −→ P∗(M); (a,m) 7→ a ·m

such that for all r1, r2 ∈ R and m1,m2,m ∈ M , the following are satisfied:
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(1) r1 · (m1 +m2) = r1 ·m1 + r2 ·m2;
(2) (r1 + r2) ·m = (r1 ·m) + (r2 ·m);
(3) (r1 · r2) ·m = r1 · (r2 ·m);
(3) 1m = m and 0m = 0.

Definition 2.10. A nonempty subset N of an R-hypermodule M is called a subhypermodule
if N is an R-hypermodule with the operations of M .

Definition 2.11. [17] Let (R,+, ·) be a hyperring. We define the relation γ as follows:
x γ y ⇔ ∃n ∈ N, ∃(k1, · · · , kn) ∈ Nn and ∃(xi1, · · · , xiki) ∈ Rki , (i = 1, · · · , n) such that

x, y ∈
n∑

i=1

(

ki∏
j=1

xij).

Let γ∗ be the transitive closure of γ and it is called the fundamental relation on R. The
fundamental relation γ∗ on R can be considered as the smallest equivalence relation such that
the quotient R/γ∗ be a ring. This quotient ring is called fundamental ring of R.

3. Graded hyperrings

In this section, we introduce and study graded hyperrings as a generalization of graded rings.
In particular, we study graded (prime, primary, maximal) hyperideals and graded hyperfields
and give some of their basic properties. In this section all hyperrings are Krasner commutative
hyperring (with identity 1).

Definition 3.1. Let G be a monoid with identity e. A hyperring (R,G) is called a G-graded
hyperring, if there exists a family {Rg}g∈G of canonical subhypergroups of R indexted by the
elements g ∈ G such that R =

⊕
g∈GRg and RgRh ⊆ Rgh for all g, h ∈ G. For simplicity, we

will denote the graded hyperring (R,G) by R. An element of a graded hyperring R is called
homogeneous if it belongs to

∪
g∈GRg and this set of homogeneous elements is denoted by

h(R). If x ∈ Rg for some g ∈ G, then we say that x is of degree g, and it is denoted by xg.
Every x ∈ R can be uniquely written as x ∈

∑
g∈G xg with xg ∈ Rg such that all except

finitely many xg
,s are 0.

In fact, every hyperring is trivially a G-graded hyperring by letting Re = R and Rg = 0 for
all g 6= e.

Lemma 3.2. If R =
⊕

g∈GRg is a graded hyperring, then Re is a subhyperring of R where e

is the identity element of monoid G.

Proof. We Know that (Re,+) is a canonical subhypergroup of R. Let xe, ye ∈ Re. Then
xe · ye ∈ ReRe ⊆ Re·e = Re, hence xe · ye ∈ Re. It is clear that for any xe, ye, ze ∈ Re,



Alg. Struc. Appl. Vol. 7 No. 2 (2020) 15-28. 19

xe · (ye+ze) = xe ·ye+xe ·ze and (xe+ye) ·ze = xe ·ze+ye ·ze. Therefore, Re is a subhyperring
of R.

Example 3.3. In Definition 3.1, let G = (Z2, ·) be the monoid with identity e = 1 (by
multiplication operation) and R = {0, a, b, c}. Consider the hyperring (R,+, ·), where hyper-
operation + and operation · are defined on R as follows:

+ 0 a b c

0 {0} {a} {b} {c}

a {a} {0, b} {a, c} {b}

b {b} {a, c} {0, b} {a}

c {c} {b} {a} {0}

. 0 a b c

0 0 0 0 0

a 0 a b c

b 0 b b 0

c 0 c 0 c
Letting R0 = {0, b} and R1 = {0, c}. Then it is easy to verify that R0 and R1 are canonical

hypergroups of (R,+) and we can write 0 ∈ 0 + 0, a ∈ b+ c, b ∈ b+ 0 and c ∈ 0 + c uniquely,
hence R = R0 ⊕R1. Also, RiRj ⊆ Rij for any i, j ∈ Z2 and so (R,G) is a graded hyperring.

Example 3.4. In Definition 3.1, let G = (Z2, ·) be the monoid with identity e = 1 and
R = {0, 1, 2}. Consider the hyperring (R,+, ·), where hyperoperation + and operation · are
defined on R as follows:

+ 0 1 2

0 {0} {1} {2}

1 {1} {1} {0, 1, 2}

2 {2} {0, 1, 2} {2}

. 0 1 2

0 0 0 0

1 0 1 2

2 0 1 2
It is easy to see that H0 = {0, 1} and H1 = {0, 2} are the only nontrivial subhypergroups

of (R,+). We have 0 ∈ 0 + 0 and 0 ∈ 1 + 2, hence 0 is not uniquely written as elements of H0

and H1. Therefore, R 6= H0 ⊕H1 and so (R,G) is not a graded hyperring.

Example 3.5. In Definition 2.1, let R = {0, a, b, c, d}. Consider the hyperring (R,+, ·), where
hyperoperation + and operation · are defined on R as follows:

+ 0 a b c d

0 {0} {a} {b} {c} {d}

a {a} {0} {c} {b, d} {c}

b {b} {c} {0} {a} {0}

c {c} {b, d} {a} {0} {a}

d {d} {c} {0} {a} {0}

. 0 a b c d

0 0 0 0 0 0

a 0 a b c d

b 0 b 0 b 0

c 0 c b a d

d 0 d 0 d 0
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It is easy to see that R0 = {0, a} and R1 = {0, c} are subhypergroups of (R,+). We have
0 ∈ 0 + 0, a ∈ a+ 0, b ∈ b+ c, c ∈ 0 + c and d ∈ a+ c. Hence, R = R0 ⊕R1, but R1R1 ⊈ R1

since c · c = a 6∈ R1. Thus R is not a Z2-graded hyperring. In the other hand, we notice
that R0 = {0, a}, R1 = {0, c} and R2 = {0, b} are subhypergroups of (R,+) but we have
a ∈ a+ 0 + 0 and a ∈ 0 + c+ b, then R 6= R0 ⊕R1 ⊕R2 . So R is not a Z3-graded hyperring.

Example 3.6. In Definition 3.1, let G = (Z2, ·) be the monoid with identity e = 1 and
R = {0, 1, 2, 3}. Consider the hyperring (R,+, ·), where hyperoperation + and operation · are
defined on R as follows:

+ 0 1 2 3

0 {0} {1} {2} {3}

1 {1} {0, 1} {3} {2, 3}

2 {2} {3 } {0 } {1}

3 {3} {2, 3} {1} {0, 1}

. 0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 2 2

3 0 0 2 2
Clearly, R0 = {0, 1} and R1 = {0, 2} are subhypergroups of (R,+). We have 0 ∈ 0 + 0,

1 ∈ 1 + 0, 2 ∈ 0 + 2 and 3 ∈ 1 + 2. Hence, R = R0 ⊕R1 and so (R,G) is a graded hyperring.
Since 0γ1 and 2γ3 therefore γ(0) = γ(1) and γ(2) = γ(3). So The quotient R/γ∗ is trivially a
graded ring by letting R0 = R/γ∗ and R1 = γ∗(0).

Open problem 3.7. For a given garded hyperring R, is its fundamenta ring R/γ∗ a graded
ring?

Definition 3.8. Let R =
⊕

g∈GRg be a graded hyperring. A subhyperring S of R is called a
graded subhyperring of R, if S =

⊕
g∈G(S∩Rg). Equivalently, S is graded if for every element

f ∈ S, all the homogeneous components of f (as an element of R) are in S.

Definition 3.9. Let I be a hyperideal of a graded hyperring R. Then I is a graded hyperideal,
if I =

⊕
g∈G(I∩Rg). For any a ∈ I and for some rg ∈ h(R) that a ∈

∑
g∈G rg, then rg ∈ I∩Rg

for all g ∈ G.

Lemma 3.10. Let X be a nonempty subset of a commutative graded hyperring R. Let {Ai}i∈I ,
be the family of all graded hyperideals in R which contains X. Then

∩
i∈I Ai is also a graded

hyperideal which contains X.

Proof. By Lemma 2.9 in [18],
∩

i∈I Ai is a hyperideal of R containing X. Now we show the
grading. Let r ∈ ∩i∈IAi, hence r ∈

∑
g∈G rg where rg ∈ Rg. So we have r ∈ Ai for all i ∈ I.

Therefore, for any g ∈ G, rg ∈ Ai since Ai is a graded hyperideal. Hence for any g ∈ G,
rg ∈ (

∩
i∈I Ai)

∩
Rg, and so

∩
i∈I Ai is a graded hyperideal.
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The graded hyperideal
∩

i∈I Ai is called graded hyperideal generated by X and is denoted by
< X >. If X = {xg1 , ..., xgn}, then < X > is said to be finitely generated by < xg1 , ..., xgn >=

{t | t ∈
∑i=n

i=1 rixgi ; ri ∈ R}. A graded hyperideal generated by a single homogeneouse element
xg ∈ h(R) is called principal and denoted by < xg >.

Let R =
⊕

g∈GRg be a graded hyperring and I be a graded hyperideal of R. Then the
quotient hyperring (R/I,⊕, ◦) where (a+ I) ◦ (b+ I) = ab+ I, for any a, b ∈ R and (a+ I)⊕
(b+I) = {t+I|t ∈ a+b}, for any a, b ∈ R is also a graded hyperring with R/I =

⊕
g∈G(R/I)g,

where (R/I)g = (Rg + I)/I.

Definition 3.11. If P 6= R be a graded hyperideal of a graded hyperring R. Then P is called
a graded prime hyperideal of R, if agbh ∈ P , then ag ∈ P or bh ∈ P for ag, bh ∈ h(R).

Definition 3.12. A graded hyperring R =
⊕

g∈GRg is a graded hyperintegral domain, if
agbh = 0, ag = 0 or bh = 0 for ag, bh ∈ h(R).

Theorem 3.13. Let P 6= R be a graded hyperideal of a commutative graded hyperring R with
identity 1. Then P is graded prime if and only if R/P is a graded hyperintegral domain.

Proof. Let P be a graded prime hyperideal of R. Let (ag + P ) ◦ (bh + P ) = 0 + P = P , so
agbh+P = P , then agbh ∈ P because agbh+P =

∪
{agbh+x|x ∈ P} and for any t ∈ agbh+P ,

there exists y ∈ P such that t ∈ agbh + y, so agbh ∈ t − y ⊆ P since t, y ∈ P and P is
graded hyperideal. Hence ag ∈ P or bh ∈ P since P is a graded prime hyperideal, therefore
ag +P = P or ah+P = P , as needed. Conversely, let agbh ∈ P for some ag, bh ∈ h(R). Hence
agbh + P = (ag + P ) ◦ (bh + P ) = P , so ag + P = P or bh + P = P since R/P is a graded
hyperintegral domain. Therefore, ag ∈ P or bh ∈ P .

Definition 3.14. Let R be a graded hyperring. The graded hyperideal M of R is said to be
maximal, if for every graded hyperideal J of R; M ⊆ J ⊆ R, implies that J = M or J = R.

Theorem 3.15. Let R be a graded hyperring with identity 1. Then every graded maximal
hyperideal is graded prime.

Proof. Let M be a graded maximal hyperideal of R. Let agbh ∈ M and ag 6∈ M for ag, bh ∈
h(R). So M ⊂< ag > +M ⊆ R, since M is a graded maximal hyperideal, then R =< ag >

+M . As 1 ∈ R, we give 1 ∈ rag + x for some r ∈ R and x ∈ M . Hence bh ∈ rbhag + bhx ⊆ M

since M is a graded hyperideal, therefore bh ∈ M , as needed.

Definition 3.16. Let R be a commutative graded hyperring with identity 1. R is called a
graded hyperfield, if whose non-zero homogeneous elements are invertible.
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Theorem 3.17. If R is a graded hyperring with identity, then R has a graded maximal
hyperideal.

Proof. The proof is similar to nongraded hyperrings.

Theorem 3.18. Let R be a commutative graded hyperring with identity and M 6= R be a
graded maximal hyperideal of R. Then M is graded maximal hyperideal if and only if R/M is
a graded hyperfield.

Proof. Let M 6= ag+M be a homogeneous elemet of R/M so ag 6∈ M . Thus M ⊂< ag > +M ⊆
R, therefore < ag > +M = R since M is a graded maximal hyperideal. Hence 1 ∈ rag + x for
some r ∈ R and x ∈ M . So 1+M = rag+x+M , hence 1+M = rag+M = (r+M)◦(ag+M),
and so ag +M is unite. conversely, let M ⊂ L ⊆ R where L is a graded hyperideal of R. So
there exists x ∈ L such that x 6∈ M . Hence we can write x ∈

∑
g∈G rg where rg ∈ L ∩ Rg.

Therefore there exists g ∈ G such that rg 6∈ M ; because if for all g ∈ G, rg ∈ M , then∑
g∈G rg ⊆ M since M is a graded hyperideal, and so x ∈ M , which is a contradiction. Hence

rg + M 6= 0R/M , then (rg + M) ◦ (x + M) = rgx + M = 1 + M for some x + M ∈ R/M .
So 1 − rgx ⊆ M ⊆ L and since rgx ∈ L, we have 1 ∈ L since L is a graded hyperideal, then
L = R, as needed.

Definition 3.19. A nonempty subset S of h(R) of a graded hyperring R is called multiplicative
closed subset if s1s2 ∈ S for all s1, s2 ∈ S.

Let R be a graded hyperring and S ⊆ h(R) be a multiplicative close subset of R. Then
the hyperring of fractions S−1R is a graded hyperring which is called the graded hyperring
of fractions. Indeed, S−1R =

⊕
g∈G(S

−1R)g where (S−1R)g = {r/s|r ∈ R, s ∈ S; g =

(degs)−1(degr)}.

Theorem 3.20. A graded hyperideal P 6= R in a commutative graded hyperring R with identity
is a graded prime hyperideal if and only if h(R)− P is a multiplicative close subset in R.

Proof. Let P be a graded prime hyperideal of R. Assume that xg, yh ∈ h(R)−P , so xgyh 6∈ P

since P is graded prime. Therefore, xgyh ∈ h(R)−P , and so h(R)−P is a multiplicative close
subset of R. Conversely, xgyh ∈ P and xg 6∈ P where xg, yh ∈ h(R). So yh ∈ P , because if
yh 6∈ P , then xgyh ∈ h(R)− P , a contradiction. Hence P is graded prime.
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Definition 3.21. Let I be a graded hyperideal in a commutative graded hyperring R with
identity. The graded radical of I (in abbreviation, Grad(I)) is the set of all x ∈ R such that
for each g ∈ G there exists ng > 0 with x

ng
g ∈ I. Note that, if r is a homogeneous element of

R, then r ∈ Grad(I) iff rn ∈ I for some positive integer n.

Definition 3.22. A graded hyperideal Q 6= R in a commutative graded hyperring R is said
to be graded primary, if agbh ∈ Q, then ag ∈ Q or bh ∈ Grad(Q) for ag, bh ∈ h(R).

Theorem 3.23. If Q is a graded primary hyperideal in a commutative graded hyperring with
identity, then Grad(Q) is graded prime.

Proof. Let aabh ∈ Grad(Q) and ag 6∈ Grad(Q). So there exists a positive integer n such that
(agbh)

n ∈ Q and ang 6∈ Q. Hence bnh ∈ Q, and so bh ∈ Grad(Q), as required.

Definition 3.24. Let R =
⊕

g∈GRg and S =
⊕

g∈G Sg be graded hyperrings. A mapping φ

from R into S is said to be a graded good homomorphism, if for all a, b ∈ R;

(1) φ(a+ b) = φ(a) + φ(b), φ(0) = 0

(2) φ(ab) = φ(a)φ(b), and
(3) For any g ∈ G; φ(Rg) ⊆ Sg.

Definition 3.25. A graded good homomorphism φ : R → S is a graded isomorphism, if φ is
one to one and onto and we write R ∼= S.

4. Graded hypermodules

In this section, we introduce and study graded hypermodules over a commutative graded
Krasner hyperring R with identity 1. Also, state and investigate graded prime subhypermod-
ules of a graded hypermodule.

Definition 4.1. Let M be an R-hypermodule. We say that M is a graded R- hypermodule
(or has an grading) if there exists a family of canonical subhypergroups {Mg}g∈G of M such
that

(1) M =
⊕

g∈GMg;
(2) RgMh ⊆ Mgh for all g, h ∈ G.

The set of all homogeneous elements of M is denoted by h(M), and so h(M) =
∪

g∈GMg.

Definition 4.2. A nonempty subset N of a graded R-hypermodule M is called a graded
subhypermodule, if N is a graded R-hypermodule with the operations of M restricted to N .
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Lemma 4.3. Let N be a graded subhypermodule of graded hypermodule M . Then the quo-
tient hypermodule M/N is a graded R- hypermodue with M/N =

⊕
g∈G(M/N)g∈G such that

(M/N)g∈G = (Mg +N)/N , which is called the quotient graded hypermodule of M by N .

Example 4.4. Let (R,+, ·) be the graded hyperring in Example 3.3. Set M = R and ⊕ = +,
then (M,⊕) is an R-hypermodule with the following hyperoperation

∀(r,m) ∈ R×M ; r ◦m = {rm}

We know that M0 = {0, b} and M1 = {0, c} are subhypergroups of (M,⊕) and M = M0
⊕

M1.
Moreover, R0M0 ⊆ M0, R0M1 ⊆ M0, R1M0 ⊆ M0, R1M1 ⊆ M1. Hence M is a graded R-
hypermodule.

Example 4.5. Let (R,+, ·) be the graded hyperring in Example 3.6. Set M = R and ⊕ = +,
then (M,⊕) is an R-hypermodule with the following hyperoperation

∀(r,m) ∈ R×M ; r ◦m = r ⊕m.

We know that M0 = {0, 1} and M1 = {0, 2} are subhypergroups of (M,⊕) and M = M0
⊕

M1

because 0 ∈ 0 ⊕ 0, 1 ∈ 1 ⊕ 0, 2 ∈ 0 ⊕ 2 and 3 ∈ 1 ⊕ 2. But R0M1 ⊈ M0, since 1 ∈ R0 and
2 ∈ M1, but 1 ◦ 2 = 1⊕ 2 = {3} ⊈ M0. Hence, the condition (2) in Definition 4.1 is not hold.
So, M is not a graded R-hypermodule.

From now on, consider the graded R-hypermodule M with operation . : R × M → M ,
denoted by (r,m) 7→ rm ∈ M .

Definition 4.6. Let M =
⊕

g∈GMg and N =
⊕

g∈GNg be two graded R- hypermodules. A
mapping φ from M into N is said to be a graded good homomorphism, if for all m,n ∈ M ;

(1) φ(m+ n) = φ(m) + φ(n), φ(0) = 0

(2) φ(rm) = rφ(m), for any r ∈ R and m ∈ M .
(3) For any g ∈ G; φ(Mg) ⊆ Ng.

Definition 4.7. A graded R-hypermodule M is called graded finitely generated, if M =

Rmg1 + ...+Rmgn where, for i = 1, 2, ..., n, mgi ∈ h(M).

Definition 4.8. Let M be a graded R-hypermodule. A proper graded subhypermodule N

of M is said to be graded maximal, provided that for graded subhypermodule K of M with
N ⊆ K ⊆ M , then N = K or K = M .

Theorem 4.9. Let M be a graded finitely generated R-hypermodule. Then every proper graded
subhypermodule of M is contained in a graded maximal subhypermodule.
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Proof. Let M = Rmg1 + ... + Rmgn for some mgi ∈ h(M) and N a proper graded subhyper-
module of M . Let S denote the set of all proper graded subhypermodules C of M such that
N ⊆ C ⊆ M . Partially order S by the set theoric inclusion. Let {Ci}i∈I be a chain in S

and C = ∪i∈ICi. Then clearly, N ⊆ C. Now we show that C ⊂ M . To this end it suffices
to show that for some k; 1 ≤ k ≤ n, we have mgk 6∈ C. On the contrary, let mgj ∈ C for
any 1 ≤ j ≤ n. Then there exists i ∈ I such that mgj ∈ Ci for all j = 1, 2, ..., n. Thus
M = Rmg1 + ... + Rmgn ⊆ Ci, which is a contradiction, since Ci ∈ S. Hence mgk 6∈ C for
some 1 ≤ k ≤ n, and so C ∈ S. Clearly, C is an upper bound for the chain {Ci}i∈I by Zorn
Lemma, which clearly is a graded maximal subhypermodule that contains N .

Definition 4.10. Let M be a graded R-hypermodule. The graded Jacobson radical of M ,
denoted by GJ(M), is the intersection of all graded maximal subhypermodules of M . If no
graded maximal subhypermodule exists, then we set GJ(M) = M .

Theorem 4.11. Let M be a graded finitely generated R-hypermodule. Then GJ(M) = M if
and only if M = {0}.

Proof. The proof is trivial by the fact that every graded subhypermodule of M is contained
in a graded maximal subhypermodule.

Definition 4.12. A homogeneous element ug of a graded R-hypermodule M is said to be unit
if ug is not contained in any graded maximal subhypermodule of M .

Theorem 4.13. Let M be a graded finitely generated R-hypermodule. Then ug ∈ h(M) is
unit if and only if Rug = M .

Proof. Let Rug 6= M . Then there exists a graded maximal subhypermodule N such that
Rug ⊆ N , so ug ∈ N , a contradiction. Conversely, let ug ∈ N for some graded maximal
subhypermodule N , then Rug ⊆ N , and hence N = M , a contradiction.

Theorem 4.14. Let M and N be two graded R-hypermodules, where M is graded finitely
generated and φ : M → N is a graded good epimorphism. If ug ∈ h(M) is unit, then φ(ng) is
also a unit in N .

Proof. Let ug be a unit in M . Then Rug = M . Let n ∈ N , and so n = φ(m) for some m ∈ M .
Therefore, m = rug for some r ∈ R. Hence n = φ(m) = rφ(ug), so N =< φ(ug) >. Thus
φ(ug) is unit in N .
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Definition 4.15. Let N be a graded subhypermodule of a graded R-hypermodule M . The
subset {r ∈ R | rM ⊆ N} is denoted by (N : M). It is clear that (N : M) is a graded
hyperideal of R.

Definition 4.16. A proper graded subhypermodule P of a graded R-hypermodule M is called
graded prime (primary) whenever rgmh ∈ P with rg ∈ h(R) and mh ∈ h(M), implies that
mh ∈ N or rgM ⊆ N (mg ∈ N or rngM ⊆ N for some positive integer n).

Theorem 4.17. every graded maximal subhypermodule is graded prime.

Proof. Let P be a graded maximal subhypermodule of a graded R-hypermodule M . Let
rgmh ∈ P for some rg ∈ h(R) and mh ∈ h(M) − P . Hence P ⊆ Rmh + P ⊂ M , and so
Rmh +P = M since P is graded maximal. Thus for any m ∈ M , there exist s ∈ R and p ∈ P

such that m ∈ smh + p. So rgm ∈ rgsmh + rgp ⊂ P . Therefore rgM ⊆ P , and so P is graded
prime.

It is clear that every graded prime is graded primary.

Theorem 4.18. Let M and N be two graded R-hypermodules and P , Q be graded (prime,
primary) subhypermodules of M , N respectively. If f : M → N is a graded R-hypermodule
homomorphism, then

(i) if f is onto and Ker(f) ⊆ P , then f(P ) is a graded (prime, primary) subhypermodule of
N .
(ii) f−1(Q) is a graded (prime, primary) subhypermodule of M .
(iii) if f is onto, then there is a bijective between, the set of all graded (prime, primary)
subhypermodules of M of the set of all graded (prime, primary) subhypermodules of N .

Proof. (i) Let P be a graded prime subhypermodule of M . Assume that rgnh ∈ f(P ) and
nh 6∈ f(P ) for some rg ∈ h(R) and nh ∈ h(N). Hence nh = f(mh) for some mh ∈ h(M),
because f is onto. Thus rgf(mh) = f(rgmh) ∈ f(P ) and so f(rgmh) = f(x) for some x ∈ P .
Hence f(rgmh − x) = 0, so rgmh − x ⊆ Kerf ⊆ P and x ∈ P . Therefore rgmh ∈ P since P is
graded subhypermodule, hence rgM ⊆ P because P is graded prime. Hence rgN = rgf(M) =

f(rgM) ⊆ f(P ), and so f(P ) is a graded prime subhypermodule of N . Now it is clear that, if
P is a graded primary subhypermodule of M , then f(P ) is a graded primary subhypermodule
of N .
(ii) Let Q be a graded prime subhypermodule of N . Suppose that rgmh ∈ f−1(Q) and
mh 6∈ f−1(Q) where rg ∈ h(R) and mh ∈ h(M). Hence f(rgmh) = rgf(mh) ∈ Q and
f(mh) 6∈ Q. Thus rgN ⊆ Q since Q is a graded prime subhypermodule of N . Therefore
rgM ⊆ rgf

−1(N) ⊆ f−1(Q), so f−1(Q) is a graded prime subhypermodule of M . Also, it is



Alg. Struc. Appl. Vol. 7 No. 2 (2020) 15-28. 27

clear that, if Q is a graded primary subhypermodule of N , then f−1(Q) is a graded primary
subhypermodule of M .
(iii) It is hold by (i) and (ii).

Theorem 4.19. Let M be a graded R-hypermodule and N be a graded subhypermodule of M .

(i) if N is a graded prime subhypermodule of M , then (N : M) is a graded prime hyperideal
of R.
(ii) if N is a graded primary subhypermodule of M , then (N : M) is a graded primary
hyperideal of R.

Proof. (i) Let N be graded prime and rgsh ∈ (N : M) and sh 6∈ (N : M) for some rg, sh ∈
h(R). Thus shm 6∈ N for some m ∈ M . Since m ∈

∑
g∈Gmg with mg ∈ h(M), so there

exists mg′ ∈ h(M) such that shmg′ 6∈ N because if for any g ∈ G, shmg ∈ N , then shm ∈
sh(

∑
g∈Gmg) ⊆ N , a contradiction. As rg(shmg′) ∈ N , then rg ∈ (N : M) since N is a graded

prime subhypermodule of M . Consequently, (N : M) is graded prime.
(ii) It is similar to (i).

Definition 4.20. Let M be a graded R-hypermodule. Then the set {r ∈ R | rM = 0} is said
to be annihilator of M and denoted by ann(M). It is clear that ann(M) is a graded hyperideal
of R.

Proposition 4.21. Let {Ni}i∈I be a collection of graded subhypermodules of a graded R-
hypermodule M . Then (∩i∈IN : M) =

∩
i∈I(Ni : M).

Proof. It is strightforward.
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