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THE SECONDARY RADICALS OF SUBMODULES

H. ANSARI-TOROGHY, F. FARSHADIFAR∗ AND F. MAHBOOBI-ABKENAR

Abstract. Let R be a commutative ring with identity and let M be an R-module. In this

paper, we will introduce the secondary radical of a submodule N of M as the sum of all

secondary submodules of M contained in N , denoted by sec∗(N), and explore the related

properties. We will show that this class of modules contains the family of second radicals

properly and can be regarded as a dual of primary radicals of submodules of M .

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and ”⊂” will denote
the strict inclusion. Further, Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for any r ∈ R

and m ∈ M with rm ∈ P , we have m ∈ P or r ∈ (P :R M), see [13]. Let N be a submodule
of M . The intersection of all prime submodules of M containing N is said to be the (prime)
radical of N and denote by radMN (or simply by rad(N)). In case N does not contained in
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any prime submodule, the radical of N is defined to be M , see [20]. A proper submodule Q

of M is said to be primary, if rm ∈ Q, where r ∈ R, m ∈ M , then m ∈ Q or rnM ⊆ Q for
some n ∈ N, see [21]. The primary radical of a submodule N of M , denoted by pradM (N) is
defined as the intersection of all primary submodules of M which contain N . If there exists
no primary submodule of M containing N , then pradM (N) = M , see [14].

A non-zero submodule S of M is said to be second if for each a ∈ R, the endomorphism of
M given by multiplication by a is either surjective or zero, see [23]. For a submodule N of
M the second radical (or second socle) of N is defined as the sum of all second submodules of
M contained in N and it is denoted by sec(N) (or soc(N)). In case N does not contain any
second submodule, the second radical of N is defined to be (0). N ̸= 0 is said to be a second
radical submodule of M if sec(N) = N , see [4] and [12]. In [18], I.G. Macdonald introduced
the notion of secondary modules. A non-zero R-module M is said to be secondary if for each
a ∈ R the endomorphism of M given by multiplication by a is either surjective or nilpotent,
see [18].

The main purpose of this paper is to introduce and study the notion of secondary radicals
of submodules and provide some useful information concerning this notion. We show that this
class of modules contains the family of second radicals properly and can be regarded as a dual
of primary radicals of submodules of M .

In the following, we recall some definitions which are needed in the sequel.

Definition 1.1. (a) An R-module M is said to be finitely cogenerated if for every set
{Mλ}λ∈Λ of submodules of M , ∩λ∈ΛMλ = 0 implies ∩n

i=1Mλi
= 0 for some positive

integer n, see [1].
(b) Let P be a prime ideal of R and let N be a submodule of an R-module M . The

P -interior of N relative to M is as the set, see [2],

IMP (N) =
∩

{L | L is a completely irreducible submodule of M and

rN ⊆ L for some r ∈ R− P}.

(c) Let R be an integral domain. An R-module M is said to be cotorsion-free if IM0 (M) =

M and is cotorsion if IM0 (M) = 0, see [3].
(d) An R-module M is said to be a comultiplication module if for every submodule N of M

there exists an ideal I of R such that N = (0 :M I), equivalently, for each submodule
N of M , we have N = (0 :M AnnR(N)), see [5].

(e) Let M be an R-module. A submodule N of M is said to be copure if (N :M I) =

N + (0 :M I) for every ideal I of R, see [7].
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(f) M is said to be fully copure if every submodule of M is copure, see [8].
(g) A submodule N of an R-module M is said to be completely irreducible if N =

∩
i∈I Ni,

where {Ni}i∈I is a family of submodules of M , implies that N = Ni for some i ∈ I. It
is easy to see that every submodule of M is an intersection of completely irreducible
submodules of M . Thus the intersection of all completely irreducible submodules of
M is zero, see [15].

(h) An R-module M is said to be atomic if every nonzero submodule of M contains a
minimal submodule, see [16].

(i) A family {Ni}i∈I of submodules of M is said to be an inverse family of submodules
of M if the intersection of two of its submodules again contains a module in {Ni}i∈I .
Also M satisfies the property AB5∗ if for every submodule K of M and every inverse
family {Ni}i∈I of submodules of M , K + ∩i∈INi = ∩i∈I(K +Ni), see [22].

We refer the reader to [19] and [1] for all concepts and basic properties of modules not
defined here.

2. The secondary radicals of submodules

Definition 2.1. Let N be a submodule of an R-module M . We define the secondary radical of
N as the sum of all secondary submodules of M contained in N and it is denoted by sec∗(N).
In case N does not contain any secondary submodule, the secondary radical of N is defined
to be (0). Also, we say that N ̸= 0 is a secondary radical submodule of M if sec∗(N) = N .

Example 2.2. Clearly every second radical submodule of an R-module M is a secondary
radical submodule of M . But the converse is not true in general. Take the submodules
Ni =< 1/pi + Z > of the Z-module Zp∞ for i = 2, 3, .... Then each Ni is a secondary radical
submodules of Zp∞ which it is not a second radical submodule.

Example 2.3. By [4, Proposition 2.1], for each submodule N of an R-module M , sec(N) ⊆
(0 :M

√
AnnR(N)). But if we consider the Z-module Zp∞ and set N2 =< 1/p2 + Z >, then

sec∗(N2) ̸⊆ (0 :M
√
AnnR(N2)).

Proposition 2.4. Let N and K be two submodules of an R-module M . Then we have the
following.

(a) sec(N) ⊆ sec∗(N) ⊆ N .
(b) If N ⊆ K, then sec∗(N) ⊆ sec∗(K).
(c) sec∗(sec∗(N)) = sec∗(N).
(d) sec∗(N) + sec∗(K) ⊆ sec∗(N +K).
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(e) sec∗(N ∩K) = sec∗(sec∗(N) ∩ sec∗(K)).
(f) If S is a P -secondary submodule of M such that S ⊆ N +K and AnnR(N) ̸⊆ P , then

S ⊆ K.
(g) If N +K = sec∗(N) + sec∗(K), then sec∗(N +K) = N +K.

Proof. The proofs are straightforward.

Theorem 2.5. Let M be a comultiplication R-module. Then we have the following.

(a) sec∗(M) = 0 if and only if M = 0.
(b) If N and K are two submodules of M , then sec∗(N) ∩ sec∗(K) = 0 if and only if

N ∩K = 0.
(c) If m a maximal ideal of R and Q is an m-secondary submodule of M , then sec∗(Q) is

an m-secondary submodule of M .
(d) If R is an integral domain with dimR = 1 and M is a secondary R-module, then

sec∗(M) is a secondary submodule of M .

Proof. (a) By [6, Theorem 3.2], M contains a minimal submodule. Now the result follows from
the fact that every minimal submodule is secondary.

(b) This follows from part (a) and Proposition 2.4 (e).
(c) We have m =

√
AnnR(Q) ⊆

√
AnnR(sec∗(Q)) so that

√
AnnR(sec∗(Q)) = R or√

AnnR(sec∗(Q)) = m. If
√

AnnR(sec∗(Q)) = R, then sec∗(Q) = 0. Thus by part (a),
Q = 0, a contradiction. Hence

√
AnnR(sec∗(Q)) = m. This implies that AnnR(sec

∗(Q)) is a
primary ideal of R. Therefore, sec∗(Q) is a m-secondary submodule of M by [9, Lemma 2.25].

(d) If AnnR(M) = 0, then clearly M is a second R-module and hence sec∗(M) = M is a
secondary submodule of M . So assume that AnnR(M) ̸= 0. Then

√
AnnR(M) is a non-zero

prime ideal of R. Since dimR = 1 and R is a domain, it follows that
√
AnnR(M) is a maximal

ideal of R. Thus the result follows from part (c).

Proposition 2.6. If V is a vector space, then sec∗(N1+N2) = sec∗(N1)+ sec∗(N2) for every
pair of subspaces N1, N2 of V .

Proof. This follows from the fact that every non-zero subspace of V is a (0)-secondary sub-
module.

Proposition 2.7. Let N and K be two submodules of an R-module M such that whenever
S ⊆ N +K, we have S ⊆ N or S ⊆ K for every secondary submodule S of M . Then

sec∗(N +K) = sec∗(N) + sec∗(K).
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Proof. If sec∗(N + K) = 0, then clearly, sec∗(N) = sec∗(K) = 0 and so sec∗(N + K) =

sec∗(N)+sec∗(K). If sec∗(N +K) ̸= 0, then there exists a secondary submodule S of M such
that S ⊆ N +K. By hypothesis, S ⊆ N or S ⊆ K. Hence S ⊆ sec∗(N) or S ⊆ sec∗(K). Since
this is true for all secondary submodules S contained in N + K, sec∗(N + K) ⊆ sec∗(N) +

sec∗(K). The reverse inclusion is clear.

We use the following basic fact without further comment.

Remark 2.8. Let N and K be two submodules of an R-module M . To prove N ⊆ K, it is
enough to show that if L is a completely irreducible submodule of M such that K ⊆ L, then
N ⊆ L.

Theorem 2.9. Let M be an R-module. If N and K are two submodules of M such that√
AnnR(N) and

√
AnnR(K) are comaximal, then sec∗(N +K) = sec∗(N) + sec∗(K).

Proof. Clearly, sec∗(N) + sec∗(K) ⊆ sec∗(N +K). If S is a secondary submodule contained
in N + K, then AnnR(N) ∩ AnnR(K) ⊆

√
AnnR(S). Thus AnnR(N) ⊆

√
AnnR(S) or

AnnR(K) ⊆
√
AnnR(S) because

√
AnnR(S) is a prime ideal of R. We can assume that

AnnR(N) ⊆
√
AnnR(S). Then AnnR(K) ̸⊆

√
AnnR(S), otherwise it contradicts comaximal-

ity. We show that S ⊆ N . Suppose that L is a completely irreducible submodule of M such
that N ⊆ L and let r ∈ AnnR(K)−

√
AnnR(S). Since K ⊆ (L :M r) and N ⊆ L ⊆ (L :M r),

N +K ⊆ (L :M r). Hence rS ⊆ L. As S is secondary, it follows that S ⊆ L. This implies that
S ⊆ N . Thus S ⊆ sec∗(N) ⊆ sec∗(N)+sec∗(K). Therefore, sec∗(N+K) ⊆ sec∗(N)+sec∗(K).

Corollary 2.10. Let K1, ...,Kn be submodules of an R-module M such that
√
AnnR(Ki) are

pairwise comaximal. Then sec∗(K1 + ...+Kn) = sec∗(K1) + ...+ sec∗(Kn).

Definition 2.11. Let M be an R-module. We call the set of all secondary submodules of
M the secondary spectrum of M and denote by Specs∗(M). The map φ : Specs∗(M) →
Spec(R/AnnR(M)) defined by φ(S) =

√
AnnR(S)/AnnR(M) for every S ∈ Specs∗(M), is

called the natural map of Specs∗(M).

Proposition 2.12. Let M be an R-module and let N be a submodule of M such that the
natural map φ of Specs∗(N) is surjective. Then

√
AnnR(sec∗(N)) =

√
AnnR(N).

Proof. When N = 0, the proposition is trivially true. So suppose that N ̸= 0. Clearly, we
have

√
AnnR(N) ⊆

√
AnnR(sec∗(N)). Now let

√
AnnR(N) = ∩iPi, where Pi runs through

V (
√
AnnR(N)) = {P ∈ Spec(R) |

√
AnnR(N) ⊆ P}. Since φ is surjective, for each Pi ∈
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V (
√
AnnR(N)) there exists Si ∈ Specs∗(N) such that

√
AnnR(Si) = Pi. Hence

∑
i Si ⊆

sec∗(N). Therefore,√
AnnR(sec∗(N)) ⊆

√
AnnR(

∑
i

Si) = ∩iPi =
√
AnnR(N),

as required.

Definition 2.13. The secondary submodule dimension of an R-module M , denoted by
dims∗M , is defined to be the supremum of the length of chains of secondary submodules
of M if Specs∗(M) ̸= ∅ and −1 otherwise.

Theorem 2.14. Let K be a field and let M be a K-vector space with dimKM = n. Then
dims∗M = n− 1.

Proof. Note that every non-zero submodule of M is secondary. Suppose that dims∗M = k.
Then there exists a chain

Sk ⊃ Sk−1 ⊃ ... ⊃ S1 ⊃ S0

of secondary submodules. By using the fact that dimKSi > dimKSi−1 (0 ≤ i ≤ k), we have
k < n. Now let {e1, e2, ..., en} be a basis for M . Thus we have the following chain of secondary
submodules of M

< e1, e2, ..., en >⊃< e1, e2, ..., en−1 >⊃ ... ⊃< e1, e2 >⊃< e1 > .

Hence k ≥ n− 1. Therefore, dims∗M = n− 1.

Theorem 2.15. If R is a one dimensional domain and M is a finitely cogenerated cotorsion
R-module with dims∗M = 1, then the following are equivalent.

(a) M is a secondary module.
(b) S1 + S2 = M for any distinct secondary submodules S1 and S2.
(c) Every proper submodule contains exactly one secondary submodule.
(d) Every proper secondary submodule is minimal.

Proof. (a) ⇒ (b). Since M is finitely cogenerated cotorsion, AnnR(M) ̸= 0. As M is a
secondary module,

√
AnnR(M) is a prime ideal of R. Thus if S is any secondary submodule

of M , then we have
√
AnnR(M) =

√
AnnR(S) because dimR = 1. Therefore, for any distinct

secondary submodules S1 and S2 of M ,
√
AnnR(S1) =

√
AnnR(S2) =

√
AnnR(M) so that

S1 + S2 is secondary. This implies that S1 + S2 = M because dims∗M = 1.
(b) ⇒ (c). Since M is finitely cogenerated, by [1], every submodule of M contains a minimal

submodule which is secondary. Now if N is a proper submodule of M and S1 and S2 are distinct
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secondary submodules of M with S1 ⊆ N and S2 ⊆ N , then we have M ⊆ N by part (b)
which is a contradiction.

(c) ⇒ (d). Let S be a proper secondary submodule of M . By [1], S contains a minimal
submodule K because S is finitely cogenerated. But every minimal submodule is secondary.
Therefore, S = K by part (c).

(d) ⇒ (a). Since dims∗M = 1, there must exist a chain of secondary submodules S1 ⊃ S2.
Now part (d), implies that S1 must be M .

Corollary 2.16. If R is a one dimensional domain and M is a secondary finitely cogenerated
cotorsion R-module with dims∗M = 1, then sec∗(N) is secondary for every non-zero submodule
N of M .

Proof. This follows from part (a) ⇒ (c) of Theorem 2.15.

Theorem 2.17. Let R be an integral domain and let M be an R-module with dims∗M = 1.
If M is Artinian cotorsion-free, then sec∗(N) = SocR(N) for any proper submodule N of M ,
where SocR(N) is the sum of all minimal submodules of N .

Proof. Since M is cotorsion-free, IM0 (M) = M ̸= 0 is a second submodule by [4] and so
secondary submodule this together with the assumption that M is Artinian (and hence every
non-zero submodule of M contains a minimal submodule) and dims∗M = 1 implies that
every proper secondary submodule of M is minimal. Hence sec∗(N) ⊆ SocR(N). The reverse
inclusion is clear.

Definition 2.18. Let M be an R-module. We say that a non-zero submodule N of M is
secondary cocompactly packed if for each family {Sλ}λ∈Λ of secondary submodules of M with
∩λ∈ΛSλ ⊆ N , we have Sλ ⊆ N for some λ ∈ Λ. A module M is called secondary cocompactly
packed if every submodule of M is secondary cocompactly packed.

Proposition 2.19. Let f : M → Ḿ be an R-module monomorphism. Then we have the
following.

(a) A submodule N of M is a secondary submodule of M if and only if f(N) is a secondary
submodule of Ḿ .

(b) If Ń is a secondary submodule of Ḿ with Ń ⊆ Im(f), then f−1(Ń) is a secondary
submodule of M .

(c) If Ḿ is secondary cocompactly packed, then M is so. The converse is true if sec∗(Ḿ) ⊆
Im(f).
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Proof. (a) and (b) are straightforward.
(c) The proof is straightforward by using parts (a) and (b).

Lemma 2.20. Let M be a secondary cocompactly packed R-module. Then for each non-
zero submodule N of M there exists a completely irreducible submodule L of M such that
sec∗(N) = sec∗(L).

Proof. Let N be a non-zero submodule of M . Then there exists a family {Lλ}λ∈Λ of completely
irreducible submodules of M such that N = ∩λ∈ΛLλ. Clearly, sec∗(N) ⊆ sec∗(Lλ) for each
λ ∈ Λ. Suppose that sec∗(Lλ) ̸⊆ sec∗(N) for each λ ∈ Λ. Then far each λ ∈ Λ there exists a
secondary submodule Sλ such that Sλ ̸⊆ N and Sλ ⊆ L. Now ∩λ∈ΛSλ ⊆ N . Thus M is not a
secondary cocompactly packed module, which is a contradiction.

Proposition 2.21. Let M be a fully copure R-module which satisfies the AB5∗ property. If M
is a secondary cocompactly packed module, then each non-zero submodule of M is completely
irreducible.

Proof. Let N be a proper submodule of M . Then by Lemma 2.20, there exists a completely
irreducible submodule L of M with N ⊆ L such that sec∗(N) = sec∗(L). But K = sec∗(K)

for each non-zero submodule K of M by [2, Theorem 3.6]. Therefore N = L as required.

Example 2.22. Let M be the Z-module Z6. Then M is a fully copure Z-module which
satisfies the AB5∗ property. Also M is a secondary cocompactly packed module. Thus by
Proposition 2.21, each non-zero submodule of M is completely irreducible.

Theorem 2.23. Let M be an R-module. Then the following statements are equivalent.

(a) M is a secondary cocompactly packed module.
(b) For each non-zero submodule N of M , if {Nλ}λ∈Λ is a family of submodules of M and

∩λ∈ΛNλ ⊆ N , then sec∗(Nµ) ⊆ N for some µ ∈ Λ.
(c) For each non-zero submodule N of M , if {Nλ}λ∈Λ is a family of secondary radicals

submodules of M and ∩λ∈ΛNλ ⊆ N , then Nµ ⊆ N for some µ ∈ Λ.

Proof. (a) ⇒ (b). Let N be a non-zero submodule of M and sec∗(Nµ) ̸⊆ N for each µ ∈ Λ.
Then for each µ ∈ Λ there exists a secondary submodule Sµ such that Sµ ⊆ Nµ and Sµ ̸⊆ N .
Therefore, ∩µ∈ΛSµ ⊆ N . This implies that M is not a secondary cocompactly packed module,
which is a contradiction.

(b) ⇒ (c). This is clear.



Alg. Struc. Appl. Vol. 7 No. 1 (2020) 1-13. 9

(c) ⇒ (a). This follows from the fact that each secondary submodule is a secondary radical
submodule.

3. Descending chain condition on secondary radical submodules

Theorem 3.1. If M is a secondary cocompactly packed module which has one minimal sub-
module, then M satisfies the DCC on secondary radicals submodules.

Proof. Let N1 ⊇ N2 ⊇ ... be a descending chain of secondary radical submodules of M and let
T = ∩iNi. If T = 0 and K is a minimal submodule of M , then T ⊂ K. As M is a secondary
cocompactly packed module, Nj ⊆ K for some j by Theorem 2.23. Therefore, Nj = K. Since
Nj ⊇ Nj+n ⊇ T = 0 for n = 1, 2, 3, ... and Nj is a minimal submodule of M , we have Nj = 0

or Nj+n = 0 for all n = 1, 2, 3, .... These contradictions show that T ̸= o. Now by Theorem
2.23, Nj ⊆ T for some j as desired.

Corollary 3.2. Let M be a secondary cocompactly packed R-module. If M is an atomic
R-module (in particular, if M is a comultiplication or finitely cogenerated R-module), then M

satisfies the DCC on secondary radical submodules.

Theorem 3.3. Let M be an R-module which satisfies the DCC for secondary radical submodule.
Then every secondary radical submodule is a secondary radical of a submodule K of M such
that M/K is finitely cogenerated.

Proof. Assume that there exists a secondary radical submodule N which is not secondary
radical of a submodule K of M such that M/K is a finitely cogenerated module. Let L1

be a completely irreducible submodule of M such that N ⊆ L1 and N1 = sec∗(L1). Then
N ⊂ N1 so that there exists a completely irreducible submodule L2 of M such that N ⊆ L2

but N2 ̸⊆ L2. Set N2 = sec∗(L1 ∩ L2). Then N ⊂ N2 ⊂ N1. Thus there exists a completely
irreducible submodule L3 of M such that N ⊆ L3 but N2 ̸⊆ L3 etc. This gives a descending
chain of secondary radical submodules N1 ⊃ N2 ⊃ N3 ⊃ ..., which is a contradiction.

Proposition 3.4. Let R be a Noetherian ring, P be a prime ideal of R, and M be an R-module
which has a finitely generated P -secondary submodule. Then IMP (0 :M Pn) = (0 :M Pn) for
some positive integer n.

Proof. Let N be a finitely generated P -secondary submodule of M . Then there exists a
positive integer n such that PnN = 0 since R is Noetherian. Let L be a completely irreducible
submodule of M such that (L :R (0 :M Pn)) ∩ (R \ P ) ̸= ∅. Since N is P -secondary, (L :R



10 Alg. Struc. Appl. Vol. 7 No. 2 (2020) 1-13.

(0 :M Pn))N = N . Hence, AnnR(N) + (L :R (0 :M Pn)) = R by using [17, Theorem 76].
Thus, (0 :M Pn) ⊆ L. It follows that IMP (0 :M Pn) = (0 :M Pn).

Theorem 3.5. Let R be a Noetherian ring and M be an Artinian R-module. Then

sec∗(M) =
∑

{IMP ((0 :M Pn)) : n ∈ N and P is a prime ideal of R}.

Proof. Let sec∗(M) =
∑

S, where S is a secondary submodules of M . Set P =
√
AnnR(S).

Then there exists a positive integer t such that P tS = 0. Hence S ⊆ (0 :M AnnR(S)) ⊆ (0 :M

P t). By [10, Lemma 2.3], there exists r ∈ R \P such that r(0 :M P t) ⊆ IMP ((0 :M P t)). Hence
rS ⊆ IMP ((0 :M P t)). Since S is P -secondary, rS = S. Therefore, S ⊆ IMP ((0 :M P t)). Hence,
sec∗(M) ⊆

∑
IMP ((0 :M P t)). Now the claim follows from the fact that IMP ((0 :M P t)) is a

secondary submodule of M by [11, Corollary 2.4].

Theorem 3.6. Let M be an R-module which satisfies the descending chain condition for
secondary radical of its submodules. Then every secondary radical submodule of M is a sum
of a finite number of secondary submodules.

Proof. Let N be a secondary radical submodule of M and N =
∑

i∈I Si, where Si is a secondary
submodule of M for each i ∈ I and the expression is reduced. Assume that I is an infinite
index set. Without loss of generality we may assume that I is countable, then

N =

∞∑
i=1

Si ⊇
∞∑
i=2

Si ⊇
∞∑
i=3

Si ⊇ · · ·

is a descending chain of secondary radical submodules of M . Since by Proposition 2.4,∑
i

Si ⊇ sec∗(
∑
i

Si) ⊇ (sec∗(
∑
i

Si)) =
∑
i

Si,

by hypothesis this descending chain must terminate, so there exists j ∈ I such that
∑∞

i=j Si =∑∞
i=j+1 Si, whence Sj ⊆

∑∞
i=j Si which contradicts that the expression N =

∑
i∈I Si is re-

duced. Thus I must be finite.

Corollary 3.7. Let M be an Artinian R-module. Then there exists a positive integer m such
that

sec∗(M) =
m∑
j=1

{IMPj
((0 :M Pn

j )) : n ∈ N and Pj is a prime ideal of R}.

Proof. This follows from Theorems 3.5 and 3.6.
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Lemma 3.8. Let M be an R-module which satisfies the property AB5∗ and {Si}i∈I be a chain
of secondary submodules of M such that ∩i∈ISi ̸= 0. Then ∩i∈ISi is a secondary submodule
of M .

Proof. Let r ∈ R and L be a completely irreducible submodule of M such that r(∩i∈ISi) ⊆ L

and ∩i∈ISi ̸⊆ L. Then ∩i∈ISi ⊆ (L :M r). By [10, Lemma 2.1], (L :M r) is a completely
irreducible submodule of M . Therefore, (L :M r) = (L :M r) + ∩i∈ISi = ∩i∈I(Si + (L :M r))

implies that there exists j ∈ I such that Sj ⊆ (L :M r). Thus as rSj ⊆ L and Sj is a secondary
submodule of M by [11, Theorem 2.8], there is a positive integer n such that rnSj = 0. Hence
rn(∩i∈ISi) = 0 and the result follows from [11, Theorem 2.8].

Theorem 3.9. Let M be a finitely cogenerated R-module which satisfies the property AB5∗.
If every secondary submodule S of M is a secondary radical of a submodule K of M such that
M/K is a finitely cogenerated R-module. Then M satisfies the descending chain condition for
secondary submodules.

Proof. Let S1 ⊇ S2 ⊇ S3 ⊇ · · · be a descending chain of secondary submodules of M . Since
M is finitely cogenerated, S = ∩i∈ISi ̸= 0. So by Lemma 3.8, S = ∩i∈ISi is a secondary
submodule of M . Thus by hypothesis, there exists a submodule K of M such that S = sec∗(K)

and M/K is a finitely cogenerated R-module. Let {Lj}j∈J be a family of completely irreducible
submodules of M such that K = ∩j∈JLj . Since M/K is a finitely cogenerated R-module, this
intersection must be finite. So suppose that K = ∩n

j=1Lj . Hence Lj ⊇ ∩n
j=1Lj = K ⊇

sec∗(K) = S = ∩i∈ISi. Now since M satisfies the property AB5∗,

Lj = ∩i∈ISi + Lj = ∩i∈I(Si + Lj)

for j = 1, 2, ..., n. Since Lj is a completely irreducible submodule of M , there exists tj ∈ I

such that Stj ⊆ Lj . Thus ∩n
j=1Stj ⊆ ∩n

j=1Lj = K. Therefore, there exists a positive integer
h, where t1 ≤ h ≤ tn such that Sh ⊆ K. Hence ∩i∈ISi = S = sec∗(K) ⊇ sec∗(Sh) = Sh. It
follows that ∩i∈ISi = Sh and the chain of secondary submodules Si terminates.

A secondary submodule N of an R-module M is said to be a maximal secondary submodule
of a submodule K of M , if N ⊆ K and there does not exist a secondary submodule L of M
such that N ⊂ L ⊂ K, see [11].

Theorem 3.10. Let M be an R-module. If M satisfies the descending chain condition on
secondary radicals submodules, then every non-zero submodule of M has only a finite number
of maximal secondary submodules or has no maximal secondary submodules.
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Proof. Suppose that there exists a non-zero submodule N of M such that N has an infinite
number of maximal secondary submodules and look for a contradiction. Then sec∗(N) is
a secondary radical submodule of M and it has an infinite number of maximal secondary
submodules. Let S be a secondary radical submodule of M chosen minimal such that S has
an infinite number of maximal secondary submodules. Then S is not secondary. Thus there
exists a submodule L of M and an element r of R such that L ⊂ S and S ̸⊆ (0 :M rt) for each
t ∈ N. Let V be a maximal secondary submodule of M contained in S. Then V ⊆ (0 :S rn) for
some n ∈ N or V ⊆ L. By the choice of S, both the modules (0 :S rn) and L have only finitely
many maximal secondary submodules. Therefore, there is only a finite number of possibilities
for the module S, which is a contradiction.

Corollary 3.11. Every Artinian R-module contains only a finite number of maximal sec-
ondary submodules or contains no maximal secondary submodules.

Proof. This follows from Theorem 3.10
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