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SOME CATEGORICAL STRUCTURES OF GENERALIZED TOPOLOGIES

IN TERMS OF MONOTONE OPERATORS

TAHERE MOHAMMADI KHORSAND AND GHASEM MIRHOSSEINKHANI∗

Abstract. In this paper, we give some generalized categories of topological spaces in terms

of monotone operators and investigate some categorical properties of them. In particular, we

present some equivalent categories of generalized topological spaces in terms of closure and

interior operators. Also, we study the properties of some classes of morphisms as final, initial,

closed and open morphisms in these categories.

1. Introduction and preliminaries

General topology is important in many fields of applied sciences as well as branches of math-

ematics. In reality it is used in data mining, computational topology for geometric design and

molecular design, computer-aided design, computer-aided geometric design, digital topology,

information system, particle physics, quantum physics and etc. The theory of generalized

topological spaces, which was founded by Á. Császár [3], is one of the most important devel-

opments of general topology. He used monotone mappings from the power set of a nonempty
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set X to itself and introduced the notions of generalized neighborhood systems and general-

ized topological spaces. He also introduced the notions of generalized continuous maps and

associated interior and closure operators on generalized topological spaces and other concepts

[3–8]. Then, many authors studied some topological notions in such spaces, such as separation

axioms [14], weak continuity [10, 11] and other notions [9].

In this paper, we give some generalized and modification categories of topological spaces

by monotone operators and investigate some categorical properties of them. In particular,

we study the properties of some classes of morphisms, such as final, initial, closed and open

morphisms in these categories.

In the following, we recall some notions and notations defined in [3]. A mapping γ : P (X)→
P (X) defined on the power set P (X) of a set X is said to be monotone provided that A ⊆
B ⊆ X implies γA ⊆ γB, where we write γA for γ(A). The pair (X, γ) is called a Γ-space.

A set A ⊆ X is said to be γ-open provided that A ⊆ γA; γ-closed provided that γA ⊆ A and

the collection µγ of all γ-open sets is a generalized topology in the sense of [3], where a subset

µ of P (X) is called a generalized topology (briefly GT) on X and the pair (X,µ) is called a

generalized topological space (briefly GTS) if ∅ ∈ µ and any union of elements of µ belongs to

µ. A GTS (X,µ) is called strong if X ∈ µ. Also the collection µ∗
γ = {A | γ(X −A) ⊆ X −A}

is a GT on X.

A monotone map γ : P (X)→ P (X) is said to be:

(1) idempotent if γ2A = γγA = γA for A ⊆ X;

(2) restricting if γA ⊆ A for A ⊆ X;

(3) enlarging if A ⊆ γA for A ⊆ X;

(4) ∨-additive if γ(A ∪B) = γA ∪ γB for A,B ⊆ X;

(5) ∧-additive if γ(A ∩B) = γA ∩ γB for A,B ⊆ X.

The conjugate of a monotone map γ is defined by γ∗A = X − γ(X − A) for A ⊆ X. Clearly

(X, γ∗) is a Γ-space. If µ is a GT on X, then the interior operator iµ : P (X)→ P (X) defined

by iµA =
∪
{M ∈ µ | M ⊆ A} is monotone, idempotent and restricting; and the closure

operator cµ : P (X) → P (X) defined by cµA =
∩
{N | A ⊆ N,X − N ∈ µ} is monotone,

idempotent and enlarging.

A mapping f : (X,µX)→ (Y, µY ) between GTS’s is said to be g-continuous if f−1(B) ∈ µX

whenever B ∈ µY [3, 10]. We denote by Top and GenTop the category of all topological

spaces with continuous maps; and the category of all generalized topological spaces with g-

continuous maps, respectively. In the following sections, readers are suggested to refer to [1]

for some categorical notions.
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2. Generalized categories of Top

In this section, we present some generalized and modification categories of topological spaces

in terms of closure and interior operators. Recall that every monotone and restricting operator

is called an interior operator, and every monotone and enlarging operator is called a closure

operator.

Definition 2.1. Let f : (X, γ) → (Y, δ) be a mapping between Γ-spaces. We say that f is

i-continuous if f−1(δB) ⊆ γf−1(B) for all subset B of Y ; and c-continuous if γf−1(B) ⊆
f−1(δB) for all subset B of Y , or equivalently, f(γA) ⊆ δf(A) for all subset A of X.

We denote by:

(1) Γ and Γ∗ the category of all Γ-spaces and i-continuous maps, and the category of all

Γ-spaces and c-continuous maps, respectively;

(2) Γr and Γ∗
e the full subcategories of Γ and Γ∗ of all restricting maps, and of all enlarging

maps, respectively;

(3) Γir and Γ∗
ie the full subcategories of Γr and Γ∗

e of all idempotent maps, respectively;

(4) Γ∧ir and Γ∗
∨ie the full subcategories of Γir and Γ∗

ie of all ∧-additive maps; and of all

∨-additive maps, respectively.

Recall that Γ∗
ie is often called the category of closure spaces [13].

The following lemma is an immediate consequence of the definitions of monotone operators.

Lemma 2.2. Let γ be a monotone map on P (X). Then the following statements hold:

(1) (γ∗)∗ = γ, µ∗
γ∗ = µγ and µ∗

γ = µγ∗.

(2) (γ∗)2 = γ∗ if and only if γ2 = γ.

(3) γ is restricting if and only if γ∗ is enlarging.

(4) A ⊆ X is γ-open if and only if X −A is γ∗-closed.

(5) γ is ∧-additive if and only if γ∗ is ∨-additive.
(6) f : (X, γ)→ (Y, δ) is i-continuous if and only if f : (X, γ∗)→ (Y, δ∗) is c-continuous.

Theorem 2.3. We have the following isomorphisms of categories:

Γ ∼= Γ∗, Γr
∼= Γ∗

e, Γir
∼= Γ∗

ie, Γ∧ir ∼= Γ∗
∨ie.

Proof. Define the functor F by F ((X, γ)
f→(Y, δ)) = (X, γ∗)

f→(Y, δ∗). By Lemma 2.2, it is easy

to show that F is an isomorphism in any of the four parts.

Remark 2.4. It is well know that a mapping f : (X,µ)→ (Y, λ) between topological spaces

(GTS’s) is continuous (g-continuous) if and only if f : (X, iµ)→ (Y, iλ) is i-continuous if and

only if f : (X, cµ) → (Y, cλ) is c-continuous. Now, if f : (X, γ) → (Y, δ) between Γ-spaces is
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i-continuous, then f : (X,µγ)→ (Y, µδ) is g-continuous. Conversely, if f : (X,µγ)→ (Y, µδ) is

g-continuous such that γ and δ are both idempotent and restricting, then for every subset B

of Y , δB ∈ µδ, so f−1(δB) ⊆ γf−1(δB) ⊆ γf−1(B). Thus f : (X, γ)→ (Y, δ) is i-continuous.

Theorem 2.5. (1) The categories Γir, Γ
∗
ie and GenTop are isomorphic.

(2) The categories Γ∧ir, Γ
∗
∨ie and Top are isomorphic.

Proof. Define the functors F : Γir → GenTop and G : GenTop→ Γir as follows:

F ((X, γ)
f→(Y, δ)) = (X,µγ)

f→(Y, µδ) and G((X,µ)
f→(Y, λ)) = (X, iµ)

f→(Y, iλ).

If (X,µ) is a GTS, then µiµ = {A ⊆ X | A ⊆ iµ(A)} = {A ⊆ X | A = iµ(A)} = µ. So

F ◦ G(X,µ) = F (X, iµ) = (X,µiµ) = (X,µ). On the other hand, if (X, γ) ∈ Γir, then it is

easy to show that iµγ = γ. So G ◦ F (X, γ) = (X, iµγ ) = (X, γ). Thus F is an isomorphism.

Finally, if (X, γ) ∈ Γ∧ir, then F (X, γ) ∈ Top, which shows that F is an isomorphism from

Γ∧ir to Top. Now, by Theorem 2.3, the proof is complete.

Theorem 2.6. GenTop is fully embeddable into any of the categories Γ, Γr, Γ
∗ and Γ∗

e as a

reflective subcategory.

Proof. Let the functor G : GenTop→ Γ(Γr) be defined by:

G((X,µ)
f→(Y, λ)) = (X, iµ)

f→(Y, iλ).

It is clear that G is faithful. If G(X,µ) = G(Y, λ), then X = Y and iµ = iλ, so µ = λ, which

shows that G is injective on objects. If f : (X, iµ) → (Y, iλ) is i-continuous, then by Remark

2.4, f : (X,µ)→ (Y, λ) is g-continuous, soG is full. HenceG is a full embedding. Now, we show

that G is an adjoint functor. Let (X, γ) be an object in Γ or Γr. Since iµγA ⊆ γ(iµγA) ⊆ γA

for every A ⊆ X, it follows that the identity map id : (X, γ) → (X, iµγ ) is i-continuous.

Suppose that (Y, λ) is a GTS and f : (X, γ) → G(Y, λ) = (Y, iλ) is an i-continuous map. By

remark 2.4, f̄ = f : (X,µγ) → (Y, µiλ = λ) is g-continuous, so the unique map satisfying the

condition G(f̄) ◦ id = f . Thus id is a G-universal arrow for (X, γ). Now, by Theorem 2.3, the

proof is complete.

The following diagram summarizes the previous results, where we use the notations ∼=, ↑
and ↪→ for isomorphic, full subcategory and reflective full subcategory, respectively.
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Γ ←↩ GenTop ↪→ Γ∗

↑ q ↑

Γr ←↩ GenTop ↪→ Γ∗
e

↑ q ↑

Γir
∼= GenTop ∼= Γ∗

ie

↑ ↑ ↑

Γ∧ir ∼= Top ∼= Γ∗
∨ie

3. Initial and final morphisms

In this section, we study the notions of initial and final morphisms with respect to closure

and interior operators. Let (A, | − |) be a concrete category over a category X. An A-

morphism f : A → B is called initial provided that for any A-object C an X-morphism

g : |C| → |A| is an A-morphism whenever f ◦ g : |C| → |B| is an A-morphism. An initial

morphism f : A→ B that has a monomorphic underlying X-morphism f : |A| → |B| is called
an embedding. The concepts of final morphism and quotient morphism are dual to the concepts

of initial morphism and embedding, respectively. A concrete category over the category Set

of sets is called a construct [1].

Remark 3.1. In the construct Top (GenTop) a continuous (g-continuous) map f : (X, τ)→
(Y, σ) is initial if and only if τ is the initial topology (initial generalized topology) with respect

to f and σ, i.e., τ = {f−1(S) | S ∈ σ}. Thus embeddings are precisely the topological

embeddings, i.e., homeomorphisms onto subspaces. Dually, f is final if and only if σ is the final

topology (final generalized topology) with respect to f and τ , i.e., σ = {A ⊆ Y | f−1(A) ∈ τ}.
Thus the quotient morphisms are the topological (generalized topological) quotient maps [1].

In an arbitrary category with a subject structure and a closure operator, the notions of

initial and final morphisms and some properties of them were introduced in [2, 12]. Similarly,

we have the following definition.

Definition 3.2. A mapping f : (X, γ)→ (Y, δ) between Γ-spaces is called:

(1) c-final if δB = f(γf−1(B)) for all subset B of Y ;

(2) c-initial if γA = f−1(δf(A)) for all subset A of X;

(3) i-final if δ∗B = f(γ∗f−1(B)) for all subset B of Y ;

(4) i-initial if γ∗A = f−1(δ∗f(A)) for all subset A of X.

It is easy to show that c-final and c-initial maps are c-continuous and i-final and i-initial

maps are i-continuous. Thus we study the properties of c-final and c-initial maps in Γ∗ and
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its full subcategories (i.e., Γ∗
e, Γ

∗
ie, Γ

∗
∨ie ); and the properties of i-final and i-initial maps in Γ

and its full subcategories (i.e., Γr, Γir, Γ
∗
∧ir ).

Theorem 3.3. In the construct Γ∗ or any of its full subcategories, a mapping f is c-initial if

and only if it is an initial morphism.

Proof. Suppose that f : (X, γ) → (Y, δ) is c-initial in one of the constructs Γ∗, Γ∗
e, Γ

∗
ie, Γ

∗
∨ie,

(Z,α) a Γ-space and h : Z → X is a function such that f ◦ h is c-continuous. Then, we

have h−1(γA) = h−1f−1(δf(A)) ⊇ α(h−1f−1(f(A))) ⊇ α(h−1(A)) for every A ⊆ X. Thus

h : (Z,α)→ (X, γ) is c-continuous. Hence f is an initial morphism.

Conversely, let f be an initial morphism in the construct Γ∗. We define γ′ : P (X) → P (X)

by γ′(A) = f−1(δf(A)) for every subset A of X. Clearly, (X, γ′) is a Γ-space. Consider the

identity map i : (X, γ′)→ (X, γ), we have f ◦ i(γ′A) = f ◦ i(f−1(δf(A))) = f(f−1(δf(A))) ⊆
δf(A) = δ(f ◦ i(A)). This implies that f ◦ i is c-continuous and since f is initial, so i is c-

continuous. Thus γA = i−1(γ(A)) ⊇ γ′(i−1A) = γ′A = f−1(δf(A)) ⊇ γf−1f(A) ⊇ γA. Hence

γA = f−1(δf(A)). If δ is enlarging, then γ′(A) = f−1(δf(A)) ⊇ f−1f(A) ⊇ A for every subset

A of X. Thus γ′ is enlarging. If δ is also idempotent, then γ′2(A) = f−1δf(f−1δf(A)) ⊆
f−1(δ2f(A)) = f−1(δf(A)) = γ′A for every subset A of X. Hence γ′2 = γ′. Finally, if δ is

∨-additive, then γ′(A∪B) = f−1(δf(A∪B)) = f−1(δf(A))∪ f−1(δf(B)) = γ′(A)∪ γ′(B) for

any subsets A and B of X. Thus, in the constructs Γ∗
e, Γ

∗
ie and Γ∗

∨ie the result holds.

Dually, similar to the proof of Theorem 3.3 and by Lemma 2.2, we have the following

theorem.

Theorem 3.4. In the construct Γ or any of its full subcategories, a mapping f is i-initial if

and only if it is an initial morphism.

Since every isomorphism functor between concrete categories preserves initial morphisms,

by Theorems 2.5 and 3.3 we have the following result.

Corollary 3.5. In the construct Top (GenTop) a continuous (g-continuous) map f :

(X, τ)→ (Y, σ) is initial if and only if cτA = f−1(cσf(A)) for every subset A of X.

Lemma 3.6. In the construct Γ∗ or any of its full subcategories, every c-final mapping is a

final morphism.

Proof. Suppose that f : (X, γ)→ (Y, δ) is c-final, (Z,α) a Γ-space and g : Y → Z is a function

such that g ◦ f is c-continuous. Then, we have g(δB) = gof(γf−1(B)) ⊆ α(gof(f−1(B))) ⊆
α(g(B)) for every B ⊆ Y . Thus g : (Y, δ) → (Z,α) is c-continuous. Hence f is a final

morphism.



Alg. Struc. Appl. Vol. 7 No. 1 (2020) 101-115. 107

Remark 3.7. We point out that in the constructs Γ∗
e, Γ

∗
ie and Γ∗

∨ie finality does not char-

acterize c-final maps. For example, let X = Y = {1, 2}, τ = {∅, {2}, X}, σ = P (Y ) and

f : (X, τ) → (Y, σ) be defined by f(1) = f(2) = 1. Then, by Remark 3.1, f is a final

morphism in Top and hence in GenTop. Since every isomorphism functor between concrete

categories preserves final morphisms, it follows that f : (X, cτ ) → (Y, cσ) is a final morphism

in Γ∗
∨ie and Γ∗

ie. But cσ{2} = {2} and f(cτf
−1({2}) = ∅. Thus f is not c-final.

Theorem 3.8. (1) In the construct Γ∗ a mapping f is c-final if and only if it is a final

morphism.

(2) In the construct Γ∗
e a mapping f is c-final if and only if it is a surjective final morphism.

(3) In any of the constructs Γ∗
ie and Γ∗

∨ie a mapping f is c-final if it is a bijective final

morphism.

Proof. (1): By Lemma 3.6, every c-final mapping is a final morphism. Conversely, let f :

(X, γ)→ (Y, δ) be a final morphism in Γ∗. We define δ′ : P (Y )→ P (Y ) by δ′(B) = f(γf−1(B))

for every subset B of Y . Clearly, (Y, δ′) is a Γ-space. Consider the identity map i : (Y, δ) →
(Y, δ′), we have δ′(iof(A)) = f(γf−1(iof(A))) = f(γf−1(f(A))) ⊇ f(γA) = iof(γA). This

implies that iof is c-continuous and since f is final, so i is c-continuous. Thus δB = i(δB) ⊆
δ′(i(B)) = δ′(B) = f(γf−1(B)) ⊆ f(f−1(δB)) ⊆ δB. Hence δB = f(γf−1(B)). Duality, let f

be an initial morphism. We define γ′ : P (X)→ P (X) by γ′(A) = f−1(δf(A)) for every subset

A of X. Clearly, (X, γ′) is a Γ-space. Consider the identity map i : (X, γ′)→ (X, γ), we have

f ◦ i(γ′A) = f ◦ i(f−1(δf(A))) = f(f−1(δf(A))) ⊆ δf(A) = δf ◦ i(A). This implies that f ◦ i
is c-continuous and since f is initial, so i is c-continuous. Thus γA = i−1(γ(A)) ⊇ γ′(i−1A) =

γ′A = f−1(δf(A)) ⊇ γf−1f(A) ⊇ γA. Hence γA = f−1(δf(A)).

(2): Let f : (X, γ)→ (Y, δ) be a c-final morphism in Γ∗
e. Then, f(X) = f(γX) = f(γf−1Y ) =

δY = Y . Thus f is surjective and hence by Lemma 3.6, the result holds. Conversely, similar

to the proof of part (1), it is enough to show that the monotone operator δ′ is enlarging. Since

f is surjective, it follows that δ′B = f(γf−1(B)) ⊇ ff−1(B) = B for every subset B of Y .

Thus δ′ is enlarging.

(3): Let f : (X, γ) → (Y, δ) be a bijective final morphism in Γ∗
ie. Then, by part (2), we

show that the monotone operator δ′ is idempotent. For every subset B of Y we have δ′2B =

f(γf−1f(γf−1(B))) = f(γ2f−1(B)) = f(γf−1(B)) = δ′B. Finally, if γ is ∨-additive, then
δ′(A ∪ B) = f(γf−1(A ∪ B)) = f(γf−1(A) ∪ f(γf−1(B) = δ′(A) ∪ δ′(B) for any two subsets

A and B of X. Thus, in the constructs Γ∗
ie and Γ∗

∨ie the result holds.

Lemma 3.9. In the construct Γ or any of its full subcategories, every i-final mapping is a

final morphism.
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Proof. Suppose that f : (X, γ) → (Y, δ) is i-final, (Z,α) a Γ-space and g : Y → Z is a

function such that g ◦ f is i-continuous. Then, we have δg−1(B) = Y − δ∗(Y − g−1(B)) =

Y −f(γ∗f−1(g−1(Z−B))) ⊇ Y −f((f−1g−1(α∗(Z−B))) ⊇ Y −g−1(α∗(Z−B)) = g−1(α(B))

for every B ⊆ Z. Thus g : (Y, δ)→ (Z,α) is i-continuous. Hence f is a final morphism.

Dually, similar to the proof of Theorem 3.8 and by Lemmas 2.2 and 3.9, we have the following

theorem.

Theorem 3.10. (1) In the construct Γ a mapping f is i-final if and only if it is a final

morphism.

(2) In the construct Γr a mapping f is i-final if and only if it is a surjective final morphism.

(3) In any of the constructs Γir and Γ∧ir a mapping f is i-final if it is a bijective final morphism.

By Theorems 3.8 and 3.10, the following result holds.

Corollary 3.11. In the construct Γr, i-final maps and in the construct Γ∗
e, c-final maps are

precisely quotient morphisms.

Proposition 3.12. In the construct Γ∗ or any of its full subcategories the following statements

hold:

(1) Every section (retraction) is c-initial (c-final).

(2) Every c-initial epimorphism is c-final.

(3) Every c-final monomorphism is c-initial.

Proof. Let f : (X, γ)→ (Y, δ) be a mapping in the construct Γ∗ or any of its full subcategories.

Then:

(1): For a retraction g with gof = 1X , we have f−1(δf(A) = g(f(f−1(δf(A)))) ⊆ g(δf(A)) ⊆
γg(f(A)) = γ(A). For a section g with fog = 1Y , we have δB = f(g(γB)) ⊆ f(γg(B)) ⊆
f(γf−1(f(g(B)))) = f(γf−1(B)).

(2): For all B ⊆ Y , we have δB = f(f−1(δf(f−1(B)))) = f(γf−1(B)).

(3): For all A ⊆ X, we have f−1(δf(A)) = f−1(f(γf−1(f(A)))) = γA.

The following composition-cancellation rules are true in the construct Γ∗ and any of its full

subcategories and their proofs are straightforward:

(1) If each of the composable morphisms f and g is c-initial (c-final), then gof is c-initial

(c-final).

(2) If gof is a c-initial, then f is c-initial, and also g is c-initial provided that f is surjective.

(3) If gof is a c-final, then g is c-final, and also f is c-final provided that g is injective.
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In the following, we are mostly interested in the pullback behaviour of final and initial maps.

A square

(P)

(P, α)

g′

��

f ′
// (Z, β)

g

��
(X, γ)

f

// (Y, δ)

is a pullback diagram in the construct Γ∗ or any of its full subcategories if and only if P

is a pullback of f along g in Set and α is the c-initial operator with respect to f ′ and g′,

i.e., αA = f ′−1(βf ′(A)) ∩ g′−1(γg′(A)) for every A ⊆ P [2]. Similarly, the square (P) is

a pullback diagram in the construct Γ or any of its full subcategories if and only if P is a

pullback of f along g in Set and α∗ is the i-initial operator with respect to f ′ and g′, i.e.,

α∗A = f ′−1(β∗f ′(A)) ∩ g′−1(γ∗g′(A)) for every A ⊆ P .

Now, let the square (P) be a pullback diagram in any case. Then we have the following

results:

Theorem 3.13. (1) If f is c-final and g′ c-initial, then f ′ is c-final and g c-initial.

(2) If f is i-final and g′ i-initial, then f ′ is i-final and g i-initial.

Proof. (1): For all L ⊆ Z we have:

βL ⊆ g−1(g(βL) ⊆ g−1(δg(L)) (g is c-continuous)

= g−1(f(γf−1(g(L)))) (f is c-final)

= f ′((g′)−1(γg′(f ′)−1(L)))

= f ′(α(f ′)−1(L) (g′ is c-initial)

⊆ βf ′((f ′)−1(L)) ⊆ β(L) (f ′ is c-continuous),

which shows both, c-finality of f ′ and c-initiality of g.

(2): The proof is similar to part (1).

Definition 3.14. A mapping f : (X, γ)→ (Y, δ) between Γ-spaces is called c-quotient if f is a

surjective map which reflects closedness, i.e., B ⊆ Y is δ-closed whenever f−1(B) is γ-closed.

The following result is an immediate consequence of the previous definition.

Proposition 3.15. In any of the constructs Γ∗
e, Γ

∗
ie, Γ

∗
∨ie we have:

(1) Every c-final map is c-quotient.

(2) If each of the composable morphisms f and g is c-quotient, then gof is also c-quotient.
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(3) If gof is c-quotient, then g is c-quotient, and also f is c-quotient provided that g is

monic.

Remark 3.16. Let f : X → Y be a surjective map and (X, γ) be a Γ-space. If we define a

monotonic map δ on Y by δB = f(γf−1(B)) for every subset B of Y , then f : (X, γ)→ (Y, δ)

is c-final.

Let f : (X, γ) → (Y, δ) be a c-continuous map. We define δf : P (Y ) → P (Y ) by δf (B) =

f(γf−1(B)) for every subset B of Y . Clearly, δf is monotone and f is c-final if δB ⊆ δf (B)

for every subset B of Y . Now we define an ascending chain of functions on P (Y ) by putting

δ0f = id, δαf = δf ◦ δα−1
f and δβf =

∪
α<β δ

α
f for every successor ordinal α and for every limit

ordinal β. Thus, for every subset B of Y we obtain a sequence of subsets of Y , δ0f (B), δ1f (B), ...

. The sequence stabilizes, so we have δσf = δσ+1
f for some ordinal σ. Now we introduce the

notation δ∞f = δσf and we say that f is c∞-final if δB ⊆ δ∞f B and also we have a characterization

of c-quotient maps which was proved in [13] (see Theorem 3.7).

Theorem 3.17. Let f : (X, γ)→ (Y, δ) be a mapping in Γ∗
e. Then f is c-quotient if and only

if it is c∞-final.

Theorem 3.18. Let f : (X, γ)→ (Y, δ) be a mapping in Γ∗
ie.

(1) If f is c∞-final, then it is a quotient morphism.

(2) If f is an injective quotient morphism, then it is c∞-final.

Proof. (1): Let f be c∞-final. By definition of δαf , we have δf (Y ) = f(γf−1(Y )) = f(γ(X)) =

f(X), δ2f (Y ) = δf (f(X)) ⊆ δf (Y ) = f(X), ..., δαf (Y ) ⊆ f(X). Thus we have Y = δY ⊆
δ∞f (Y ) = δσf (Y ) ⊆ f(X), and hence f(X) = Y , so that f is surjective. Now let (Z,α) be a

Γ-space and also g : Y → Z be a function for which gof is c-continuous. For all C ⊆ Z, we

have

δf (g
−1(C)) = f(γf−1(g−1(C))) ⊆ f(f−1(g−1(αC))) = g−1(αC).

δ2f (g
−1(C)) ⊆ δf (g

−1(αC)) = f(γf−1(g−1(αC))) ⊆ f(f−1(g−1(α2C))) =

g−1(αC), ..., δαf (g
−1(C)) ⊆ g−1(αC).

Thus we have δ(g−1(C)) ⊆ δ∞f (g−1(C)) = δσf (g
−1(C)) ⊆ g−1(αC), which shows that g :

(Y, δ)→ (Z,α) is c-continuous. Thus f is a final morphism.

(2): Since f is injective, it follows that δαf is idempotent for every ordinal α. Thus by Theorem

3.17, the result holds.

4. Closed and open morphisms

In this section, we study the notions of closed and open morphisms with respect to closure

and interior operators.
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Definition 4.1. A mapping f : (X, γ)→ (Y, δ) between Γ-spaces is called:

(1) c-closed or Γ-preserving if f(γA) = δf(A) for all subset A of X;

(2) c-open or Γ-reflecting if f−1(δB) = γf−1(B) for all subset B of Y ;

(3) i-closed or Γ∗-preserving if f(γ∗A) = δ∗f(A) for all subset A of X;

(4) i-open or Γ∗-reflecting if f−1(δ∗B) = γ∗f−1(B) for all subset B of Y .

It is easy to show that c-open and c-closed maps are c-continuous and i-open and i-closed

maps are i-continuous. The following lemma shows that c-open and i-open maps are both

c-continuous and i-continuous.

Lemma 4.2. A mapping f : (X, γ) → (Y, δ) between Γ-spaces is c-open if and only if it is

i-open.

Proof. For every B ⊆ Y we have:

f−1(δ∗B) = γ∗f−1(B)⇔ f−1(Y − δ(Y −B)) = X − γ(X − f−1(B))

⇔ f−1(δ(Y −B)) = γ(X − f−1(B)

⇔ f−1(δ(Y −B)) = γ(f−1(Y −B))

⇔ f−1(δB) = γf−1(B).

Theorem 4.3. (1) If f : (X, γ)→ (Y, δ) is c-closed in Γ∗ or any of its full subcategories,

then f maps γ-closed subsets to δ-closed subsets.

(2) Let f : (X, γ) → (Y, δ) be a c-continuous mapping in any of the categories Γ∗
ie and

Γ∗
∨ie. Then f is c-closed if and only if f maps γ-closed subsets to δ-closed subsets.

(3) If f : (X, γ) → (Y, δ) is i-closed in Γ or any of its full subcategories, then f maps

γ∗-closed subsets to δ∗-closed subsets.

(4) Let f : (X, γ) → (Y, δ) be an i-continuous mapping in any of the categories Γir and

Γ∧ir. Then f is i-closed if and only if f maps γ∗-closed subsets to δ∗-closed subsets.

Proof. (1): Let A be a γ-closed subset of X. Then δf(A) = f(γA) ⊆ f(A). Thus f(A) is a

δ-closed subset of Y .

(2): Let f : (X, γ) → (Y, δ) be a c-continuous mapping such that f maps γ-closed subsets to

δ-closed subsets. Then for every subset A of X, γA is γ-closed, so f(γA) = δf(γA). Since γ is

enlarging, it follows that f(γA) ⊇ δf(A). On the other hand, by c-continuity f(γA) ⊆ δf(A).

Hence f(γA) = δf(A) for every subset A of X. Thus by part one the result holds.

The proof of parts (3) and (4) is similar to parts (1) and (2).
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Now, by Theorem 4.3, the following result holds.

Corollary 4.4. Let f : (X, τ)→ (Y, σ) be a continuous mapping in any of the categories Top

and GenTop. Then f : (X, cτ ) → (Y, cσ) is c-closed if and only if f maps cτ -closed subsets

to cσ-closed subsets; and f : (X, iτ )→ (Y, iσ) is i-closed if and only if f maps (i∗τ = cτ )-closed

subsets to (i∗σ = cσ)-closed subsets. Thus f is c-closed or i-closed if and only if f is a closed

map.

Theorem 4.5. (1) If f : (X, γ) → (Y, δ) is c-open in Γ∗ or any of its full subcategories,

then f maps γ∗-open subsets to δ∗-open subsets.

(2) Let f : (X, γ) → (Y, δ) be a c-continuous mapping in any of the categories Γ∗
ie and

Γ∗
∨ie. Then f is c-open if and only if f maps γ∗-open subsets to δ∗-open subsets.

(3) If f : (X, γ)→ (Y, δ) is i-open in Γ or any of its full subcategories, then f maps γ-open

subsets to δ-open subsets.

(4) Let f : (X, γ) → (Y, δ) be an i-continuous mapping in any of the categories Γir and

Γ∧ir. Then f is i-open if and only if f maps γ-open subsets to δ-open subsets.

Proof. (1): Let A be a γ∗-open subset of X. By Lemmas 2.2 and 4.2, f : (X, γ∗)→ (Y, δ∗) is

c-continuous, so f(A) ⊆ f(γ∗A) ⊆ δ∗f(A). Thus f(A) is a δ∗-open subset of Y .

(2): Let f : (X, γ) → (Y, δ) be a c-continuous mapping such that f maps γ∗-open sub-

sets to δ∗-open subsets. Then for every subset B of Y , γ∗f−1B is γ∗-open, so γ∗f−1(B) ⊆
f−1f(γ∗f−1(B)) = f−1(δ∗f(γ∗f−1(B))) ⊆ f−1(δ∗B). On the other hand, by i-continuity

f : (X, γ∗) → (Y, δ∗), we have f−1(δ∗B) ⊆ γ∗f−1(B). Hence f−1(δ∗B) = γ∗f−1(B) for every

subset B of Y . By Lemma 4.2, f is c-open. Thus by part one the result holds.

The proof of parts (3) and (4) is similar to parts (1) and (2).

Corollary 4.6. Let f : (X, τ)→ (Y, σ) be a continuous mapping in any of the categories Top

and GenTop. Then f : (X, cτ ) → (Y, cσ) is c-open if and only if f maps (c∗τ = iτ )-open

subsets to (c∗σ = iσ)-open subsets; and f : (X, iτ ) → (Y, iσ) is i-open if and only if f maps

iτ -open subsets to iσ-open subsets. Thus f is c-open or i-open if and only if f is an open map.

The following propositions hold in Γ∗ and any of its full subcategories and proofs are straight-

forward:

Proposition 4.7. (1) Every c-closed and c-open monomorphism is c-initial.

(2) Every c-closed and c-open epimorphism is c-final.

(3) Every c-initial epimorphism is c-closed and c-open, equivalently, every c-final

monomorphism has this properties.
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Proposition 4.8. (1) If each of the composable morphisms f and g is c-closed (c-open),

then gof is c-closed (c-open).

(2) If gof is c-closed (c-open), then g is c-closed (c-open) provided that f is surjective.

(3) If gof is c-closed (c-open), then f is c-closed (c-open) provided that g is monic.

In the following, we study the pullback behaviour of c-closed and c-open maps. Hence, let

the square (P) be a pullback diagram in Γ∗ or any of its full subcategories. Then we have the

following results:

Theorem 4.9. (1) If f is c-closed (c-open) and g′ c-initial, then f ′ is c-closed (c-open).

(2) If f ′ is c-closed (c-open) and g c-final, then f is c-closed (c-open).

Proof. (1. c-closed): For all K ⊆ P we have:

βf ′(K) ⊆ βg−1(g(f ′(K)) ⊆ g−1(δg(f ′(K))) (f is c-continuous)

= g−1(δf((g′(K))))

= g−1(f(γg′(K))) (f is c-closed)

= f ′(g′)−1(γg′(K))

= f ′(αK) (g′ is c-initial).

(2. c-closed): For all A ⊆ X we have:

δf(A) = g(βg−1(f(A)) (g is c-final)

= g(βf ′(g′)−1(A))

= g(f ′(α(g′)−1(A))) (f ′ is c-closed)

= f(g′(α(g′)−1(A)))

⊆ f(γg′(g′)−1(A)) (g′ is c-continuous)

⊆ f(γA).

(1. c-open): For all L ⊆ Z we have:

(f ′)−1(βL) ⊆ (f ′)−1(βg−1(g(L))

⊆ (f ′)−1(g−1(δg(L)) (g is c-continuous)

= (g′)−1(f−1(δg(L))

= (g′)−1(γf−1(g(L)) (f is c-open)

= (g′)−1(γg′(f ′)−1(L))

= α(f ′)−1(L) (g′ is c-initial).
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(2. c-open): For all B ⊆ Y we have:

f−1(δB) = f−1(g(βg−1(B))) (g is c-final)

= g′(f ′)−1(βg−1(B))

= g′(α(f ′)−1(g−1(B))) (f ′ is c-open)

= g′(α(g′)−1(f−1(B)))

⊆ g′((g′)−1(γf−1(B))) (g′ is c-continuous)

⊆ γf−1(B).

5. Conclusion

In this paper, we have given some isomorphic and generalized categories of the category Top

of topological spaces and the category GenTop of generalized topological spaces in terms of

closure operators as Γ∗, Γ∗
e, Γ

∗
ie, Γ

∗
∨ie; and in terms of interior operators as Γ, Γr, Γir, Γ∧ir.

We have studied the properties of some classes of morphisms such as final, initial, closed and

open morphisms with respect to closure operators by defining c-final, c-initial, c-closed, c-open

maps; and with respect to interior operators by defining i-final, i-initial, i-closed and i-open

maps, respectively. It is shown that the categories Γ∗
∨ie and Γ∧ir are convenient isomorphic

categories of Top; and the categories Γ∗
ie and Γir are convenient isomorphic categories of

GenTop.
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