
Algebraic Structures and Their Applications Vol. 7 No. 1 (2020) pp 83-99.

Research Paper

THE STRONGLY ANNIHILATING-SUBMODULE GRAPH OF A MODULE

AHADOLLAH FARZI-SAFARABADI AND REZA BEYRANVAND∗

Abstract. In this paper, we define the notion of strongly annihilating-submodule graph

of modules. This graph is a straightforward common generalization of the annihilating-

submodule graph and the annihilating-ideal graph. In addition to providing the properties of

this graph in general, we investigate the behavior of the graph when modules are reduced or

divisible.

1. Introduction

Throughout the paper R is a commutative ring with nonzero identity and M is a unitary
right R-module. For a submodule N of M , denoted by N ≤ M , the ideal {r ∈ R | Mr ⊆ N}
will be denoted by (N :R M) (briefly by (N : M)). Recall that M is indecomposable if it is
nonzero and cannot be written as a direct sum of two nonzero submodules. A module is called
uniform if the intersection of any two nonzero submodule is nonzero. Also a submodule N of M
is called an essential submodule of M , denoted by N ≤e M , if for any nonzero submodule K of
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M , K∩N ̸= 0. For X ⊆ M , the annihilator of X in R is the ideal annR(X) = {r ∈ R |Xr = 0}.
We say that M has uniform dimension n (written u.dimM = n) if there exists an essential
submodule N ≤e M which is a direct sum of n uniform submodules, i.e., u.dimM is the
supremum of the set {k | M contains a direct sum of k nonzero submodules}, for more details
see [14]. The definitions and notions of graph theory used throughout this paper can be found
in [12].

For any ring R with the set of zero-divisors Z(R), the zero-divisor graph of R, denoted by
Γ(R), is a simple graph with vertices Z(R)∗ = Z(R) \ {0} and two distinct vertices x and y

are adjacent if and only if xy = 0 (see for example [1, 2, 3, 4, 5]). An ideal I of a commutative
ring R is called annihilating-ideal if IJ = 0, for a nonzero ideal J of R. Also the set of
all annihilating-ideals of R is denoted by A(R). The notion of annihilating-ideal graph was
introduced and studied in [9] and [10]. The annihilating-ideal graph of R, denoted by AG(R), is
a simple graph with vertices A(R)∗ = A(R)\{0} and two distinct vertices I and J are adjacent
if and only if IJ = 0. �� Recently, the notions of zero-divisor graph and annihilating-ideal graph
have been extended from rings to modules in different ways. For instance, we can refer to [8]
and [15]. In [8], the authors introduced and studied the annihilating-submodule graph. By
the annihilating-submodule graph of M , denoted by AG(M), we mean the simple graph with
vertices {0 ̸= N ≤ M | M(N : M)(K : M) = 0, for a nonzero submodule K of M} and two
distinct vertices N and K are adjacent if and only if M(N : M)(K : M) = 0, see [7] and [8].

In this paper, we define and study the notion of strongly annihilating-submodule graph as
a straightforward common generalization of two graphs AG(R) and AG(M). The strongly
annihilating-submodule graph of M , denoted by SAG(M), is an undirected (simple) graph in
which a nonzero submodule N of M is a vertex if N(K : M) = 0 or K(N : M) = 0, for a
nonzero submodule K ≤ M and two distinct vertices N and K are adjacent if and only if
N(K : M) = 0 or K(N : M) = 0. It is clear that if M = R, then SAG(R) = AG(R) and if M
is a multiplication R-module, then SAG(M) = AG(M). We investigate the interplay between
the graph theoretic properties of SAG(M) and some algebraic properties of a module M . In
Section 2, some properties of SAG(M) is presented. For example, we show that SAG(M) is a
connected graph with diam(SAG(M)) ≤ 3 (Theorem 2.4). Also, if SAG(M) contains a cycle,
then gr(SAG(M)) ≤ 4 (Theorem 2.5). We prove that if M is a finitely generated semisimple
R-module such that its homogeneous components are simple, then for any two submodules
N,K of M we have N and K are adjacent if and only if N ∩K = 0 (Proposition 2.11). It is
shown that AG(M) = SAG(M) ∼= AG(R), for any finitely generated faithful multiplication R-
module M (Theorem 2.20). In Section 3, we investigate the properties of SAG(M), when M is
a reduced module. For instance, we show that if M is a reduced R-module such that SAG(M)

is a bipartite graph and M is not a vertex in SAG(M), then SAG(M) is a complete bipartite
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graph and u.dimM = 2 (Theorem 3.3). Finally, in Section 4, we focus on divisible modules.
For example, we prove that if M contains a nonzero divisible submodule, then SAG(M) is the
empty graph or every nonzero submodule of M is a vertex in SAG(M) (Proposition 4.3).

2. Some properties of SAG(M)

Throughout the paper M is a unitary right R-module and N,K are nonzero submodules of
M . The following useful results will be used frequently in this paper.

Lemma 2.1. (1) If N and K are adjacent in SAG(M), then N1 and K1 are adjacent in
SAG(M) for every 0 ̸= N1 ≤ N and 0 ̸= K1 ≤ K with N1 ̸= K1;
(2) If N ∩K = 0, then N and K are adjacent in SAG(M);
(3) If N is not a vertex of SAG(M), then N ≤e M .

Proof. Clear.

Lemma 2.2. If N and K are adjacent in AG(M), then either N and K are also adjacent in
SAG(M) or there exists a nonzero submodule of N ∩K such that is adjacent to both N and K

in SAG(M). In particular; the set of all vertices of AG(M) is equal to the set of all vertices
of SAG(M).

Proof. Suppose that N and K are not adjacent in SAG(M). Then N ∩K ̸= 0. Since M(N :

M)(K : M) = 0, we have M(N ∩K : M)(K : M) = 0 and M(N ∩K : M)(N : M) = 0. Now
one of the following cases holds.
Case 1: M(N ∩ K : M) = 0. Then N(N ∩ K : M) = 0 and K(N ∩ K : M) = 0. Since by
hypothesis, N ∩K ̸= N and N ∩K ̸= K, N ∩K is adjacent to both N and K in SAG(M).
Case 2: M(N ∩ K : M) ∈ {N,K}. Then we have N(K : M) = 0 or K(N : M) = 0, a
contradiction.
Case 3: M(N ∩K : M) /∈ {0, N,K}. Then M(N ∩K : M) is adjacent to both N and K in
SAG(M).

In the following result, we use the notations dA(N,K) and dS(N,K) for showing the distance
of two vertices N and K in AG(M) and SAG(M), respectively.

Lemma 2.3. Let N and K be two vertices in AG(M). Then we have the following statements.
(1) If dA(N,K) = 1, then dS(N,K) ≤ 2.
(2) If dA(N,K) = 2, then dS(N,K) = 2.
(3) If dA(N,K) = 3, then dS(N,K) = 3.
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Proof. (1) follows from Lemma 2.2.
(2). Let dA(N,K) = 2 and N − L − K be a path in AG(M). Clearly, N and K are not
adjacent in SAG(M) and so dS(N,K) ≥ 2. By Lemma 2.1(1) and Lemma 2.2, there exists
L1 ≤ L such that both N and K are adjacent to L1 in SAG(M). Thus N − L1 −K is a path
in SAG(M) and hence dS(N,K) = 2.
(3). Let dA(N,K) = 3 and N − L − T − K be a path in AG(M). Clearly, dS(N,K) ≥ 3.
Since dA(N,T ) = 2, dS(N,T ) = 2 and so N − T1 − T is a path in SAG(M) for some vertex
T1. Clearly, T1 and K are not adjacent in AG(M) and since T1 − T −K is a path in AG(M),
dA(T1,K) = 2 and so dS(T1,K) = 2. Therefore T1 − T2 −K is a path in SAG(M), for some
vertex T2 and hence we have the path N − T1 − T2 −K in SAG(M).

For a given graph G, we use the notations diam(G) and gr(G) for the diameter and the
girth of G, respectively. Also the vertex set of G is denoted by V (G).

Theorem 2.4. SAG(M) is a connected graph with diam(SAG(M)) ≤ 3.

Proof. Since V (SAG(M)) = V (AG(M)), for any two vertices N and K in SAG(M), by [8,
Theorem 3.4], dA(N,K) ≤ 3. Now by Lemma 2.3, dS(N,K) ≤ 3 and the proof is complete.

Theorem 2.5. If SAG(M) contains a cycle, then gr(SAG(M)) ≤ 4.

Proof. Let N1 − N2 − · · · − Nn − N1 be a cycle in SAG(M) and set L = N1 ∩ N3. If L = 0,
then N1 − N3 is an edge and so N1 − N2 − N3 − N1 is a cycle. Thus we may assume L ̸= 0

and consider the following cases:
(a) L = N1. Then N1 ⊆ N3 and since N3 −N4 is an edge by Lemma 2.1(1), N1 −N4 is also
an edge. Hence N1 −N2 −N3 −N4 −N1 is a cycle of length 4.
(b) L = N2. Then N2 ⊆ N3 and since N3 −N4 is an edge by Lemma 2.1(1), N2 −N4 is also
an edge. Hence N2 −N3 −N4 −N2 is a cycle of length 3.
(c) L = N3. Then N3 ⊆ N1 and since N1 −Nn is an edge by Lemma 2.1(1), N3 −Nn is also
an edge. Hence N1 −N2 −N3 −Nn −N1 is a cycle of length 4.
(d) L = N4. Then N4 ⊆ N3 and since N2 −N3 is an edge by Lemma 2.1(1), N2 −N4 is also
an edge. Hence N2 −N3 −N4 −N2 is a cycle of length 3.
(e) L /∈ {N1, N2, N3, N4}. Then L is adjacent to both N2 and N4. Thus L−N2−N3−N4−L

is a cycle of length 4.

In the following result, we provide a sufficient condition for existence a cycle in SAG(M).

Proposition 2.6. If SAG(M) contains a path of length 4, then SAG(M) contains a cycle.
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Proof. Let N1−N2−N3−N4−N5 be a path of length 4. If N2∩N4 = 0, then N2−N3−N4−N2

is a cycle. Thus we assume that N2 ∩N4 ̸= 0 and set L = N2 ∩N4. We consider the following
cases:
Case 1: L = N1. Then by Lemma 2.1(1), N1 −N2 −N3 −N1 is a cycle.
Case 2: L = N2. Then by Lemma 2.1(1), N2 −N3 −N4 −N5 −N2 is a cycle.
Case 3: L = N3. Then by Lemma 2.1(1), N1 −N2 −N3 −N1 is a cycle.
Case 4: L = N4. Then by Lemma 2.1(1), N1 −N2 −N3 −N4 −N1 is a cycle.
Case 5: L = N5. Then by Lemma 2.1(1), N3 −N4 −N5 −N3 is a cycle.
Case 6: L /∈ {N1, N2, N3, N4, N5}. Then by Lemma 2.1(1), L is adjacent to both N1 and N3.
Thus N1 −N2 −N3 − L−N1 is a cycle.

An R-module M is called prime if annR(M) = annR(N), for any nonzero submodule N of
M . Also the empty graph is denoted by K0.

Proposition 2.7. The following statements are equivalent:
(1) SAG(M) is the empty graph;
(2) M is a uniform R-module, ann(M) is a radical ideal and M is not a vertex;
(3) annR(M) is a prime ideal and M is not a vertex;
(4) M is a prime module and M is not a vertex.

Proof. (1) ⇒ (2). Let SAG(M) = K0. Then by Lemma 2.1(2), N ∩ K ̸= 0, for all nonzero
submodules N and K of M , This implies that M is a uniform R-module. Now suppose that
I and J are two ideals of R such that IJ ⊆ ann(M), but MI ̸= 0 and MJ ̸= 0. Since
MI(MJ : M) ⊆ MIJ = 0, MI and MJ must be vertices, a contradiction. Thus MI = 0 or
MJ = 0 and so ann(M) is a prime ideal. It follows that ann(M) is a radical ideal.
(2) ⇒ (1). Suppose that N is a vertex of SAG(M). Then there exists a vertex K such that
N(K : M) = 0 or K(N : M) = 0. If K = N , then N(N : M) = 0. Otherwise, K ̸= N and
since M is uniform, N ∩ K ̸= 0 and hence L(L : M) = 0, where L = N ∩ K. Thus in any
case, there exists a vertex L ≤ N such that L(L : M) = 0. Now, M(L : M)2 = M(L : M)(L :

M) ⊆ L(L : M) = 0 and since ann(M) is radical, M(L : M) = 0. This means that M is a
vertex, a contradiction.
(1) ⇒ (3). It is similar to the proof of (1) ⇒ (2).
(3) ⇒ (1). Suppose that N is a vertex of SAG(M). Then there exists a vertex K such that
N(K : M) = 0 or K(N : M) = 0. If K = N , then N(N : M) = 0 and so M(N : M)(N :

M) = 0. If K ̸= N , then M(N : M)(K : M) = 0. In any case, since ann(M) is a prime ideal,
M(N : M) = 0 or M(K : M) = 0 and hence M is a vertex , a contradiction.
(1) ⇒ (4). Suppose NI = 0, where N is a nonzero submodule of M and I is an ideal of R. If
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MI ̸= 0, then MI(N : M) = 0 and so N is a vertex, a contradiction by (1). Thus MI = 0

and so M is a prime R-module.
(4) ⇒ (1). Suppose that N is a vertex of SAG(M). Then there exists a nonzero submodule K

of M such that N(K : M) = 0 or K(N : M) = 0. Since M is prime, we have M(K : M) = 0

or M(N : M) = 0. Hence M is a vertex, respectively, a contradiction. We note that if K = N ,
then N(N : M) = 0 and again since M is prime, M(N : M) = 0, a contradiction.

If SAG(R) = K0 and I is an ideal of R such that I2 = 0, then I is a vertex in SAG(R), a
contradiction. Thus R is an integral domain. Also if M is a simple R-module and SAG(M) ̸=
K0, then M is the only vertex in SAG(M). Thus we must have 0 = M(M : M) = MR = M ,
a contradiction; so SAG(M) = K0. Thus we have the following result.

Corollary 2.8. (1) SAG(R) = K0 if and only if R is an integral domain.
(2) For any simple R-module M , SAG(M) = K0.

Example 2.9. (1) SAG(Q) is the empty graph when we consider Q as a Q-module. However,
SAG(Q) is a complete graph when we consider Q as a Z-module, because (H :Z Q) = 0, for
every 0 ̸= H ≨ Q.
(2) In Zn as a Z-module, every nonzero proper submodule is a vertex. To see this, let n =

pα1
1 · · · pαt

t , where pi’s are distinct prime numbers. For every nonzero proper submodule N =

pβ1
1 · · · pβt

t Zn, we have N(K : Zn) = 0, where K = pγ11 · · · pγtt Zn with βi+γi = αi, for 1 ≤ i ≤ t.
(3) Let R = Z and M = Zp⊕Zp, where p be a prime number. For every 0 ̸= N ⪇ M , we have
(N : M) = pZ and so K(N : M) = 0 for every nonzero submodule K of M . Hence SAG(M)

is a complete graph with p+ 2 vertices, for more details see [16].

Proposition 2.10. The ring R is a field if and only if for every R-module M , either
SAG(M) = K0 or SAG(M) is a nonempty complete graph.

Proof. (⇒) Let R be a field and M be an R-module. If dim(MR) = 1, then by Corollary 2.8,
SAG(M) = K0. If dim(MR) ≥ 2, then for every nonzero proper submodule N of M , (N :

M) = 0. Because 0 ̸= r ∈ (N : M) implies that Mr ⊆ N , and hence M ⊆ Nr−1 ⊆ N ⊆ M ,
a contradiction. Thus K(N : M) = 0, for every nonzero submodule K of M and hence N is
adjacent to each nonzero submodule of M .
(⇐) Suppose that for every R-module M , SAG(M) = K0 or SAG(M) is a nonempty complete
graph. Let I be a maximal ideal of R and put M = R

I ⊕ R. Since SAG(M) ̸= K0 and
R
I (R : M) = 0, we have R

I (J : M) = 0, for every nonzero ideal J of R. Thus every nonzero
ideal of R is a vertex. Hence by hypothesis, J1(J2 : M) = 0, for all distinct nonzero ideals J1

and J2 of R. Since IJ2 ⊆ (J2 : M), we have J1IJ2 = 0. Thus for any r ∈ R \ {0, 1}, we have
RIRr = 0 and RIR(1 − r) = 0. Because R and Rr are distinct nonzero ideals of R and two
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ideals R and R(1− r) are as well. Therefore we conclude that Ir = 0 and I(1− r) = 0, for all
r /∈ {0, 1}. This implies that I = 0 and so R is a field.

Let M = ⊕ISi be a finitely generated semisimple R-module. If we set Mλ = Σi∈IλSi, where
Iλ ⊆ I is maximal with respect to the property that Si

∼= Sj , for all i, j ∈ Iλ, then M = ⊕λMλ

and each Mλ is said a homogenous component of M .

Proposition 2.11. Let M be a finitely generated semisimple R-module such that its homoge-
neous components are simple and let N,K be two nonzero submodules of M . Then N and K

are adjacent if and only if N ∩K = 0.

Proof. By Lemma 2.1(2), the “ if ” part is obvious. Suppose that M = ⊕ISi, where Si’s are
non isomorphic simple submodules of M and N,K are adjacent. On the contrary, assume that
N ∩K ̸= 0. By [6, Proposition 9.4], there exist subsets I1 and I2 of I such that N ∼= ⊕I1Si,
K ∼= ⊕I2Si and M/K ∼= ⊕I\I2Si. Since N and K are adjacent, without loss of generality, we
may assume N(K : M) = 0. Then ΠI\I2annR(Si) ⊆ ∩I\I2annR(Si) = (K : M) ⊆ annR(N) =

∩I1annR(Si). We note that for any i ∈ I, annR(Si) is a prime (maximal) ideal of R. Thus for
any j ∈ I1, there exists ij ∈ I \ I2 such that annR(Sij ) ⊆ annR(Sj) and hence annR(Sij ) =

annR(Sj). This implies that Sij
∼= Sj , because Si is a simple R-module for any i ∈ I. On the

other hand, N ∩K contains a simple submodule, say, T . Again by [6, Proposition 9.4], there
exist α ∈ I1 and β ∈ I2 such that T ∼= Sα

∼= Sβ. Since α ∈ I1, there exists iα ∈ I \ I2 such
that Siα

∼= Sα. Thus we have Siα
∼= Sβ, a contradiction.

Corollary 2.12. If M is a finitely generated semisimple R-module such that its homogeneous
components are simple, then SAG(M) = AG(M).

Proof. Suppose that N and K are adjacent in AG(M). By Lemma 2.2, N and K are adjacent
in SAG(M) or there exists a nonzero submodule L of N ∩K such that is adjacent to both N

and K in SAG(M). If the latter case occurs, then by Proposition 2.11, we have L ∩N = 0, a
contradiction. Thus N and K are adjacent in SAG(M) and the proof is complete.

Remark 2.13. Let M = ⊕n
i=1Si, where Si’s be non isomorphic simple submodules of M .

Then by Proposition 2.11, the vertex set of SAG(M) is {⊕n
i=1S

′
i | S′

i = Si or S′
i = 0, for any

i} \ {0,M}. Thus we have

|V (SAG(M))| =
(
n
1

)
+
(
n
2

)
+ . . .+

(
n

n−1

)
= 2n − 2.
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Also the degree of the vertex ⊕n
i=1S

′
i is equal to 2n−k − 1, where k is the number of nonzero

components in ⊕n
i=1S

′
i. Since Si is adjacent to Sj , for each i ̸= j, the graph SAG(M) includes

a complete subgraph with n vertices. Thus if n = 2, gr(SAG(M)) = ∞ and if n ≥ 3,
gr(SAG(M)) = 3; in particular, it is easy to see that the clique number of SAG(M) is equal to
n. Moreover diam(SAG(M)) = 3, because S1 ⊕S2 ⊕ . . .⊕Sn−1 −Sn −S1 −S2 ⊕S3 ⊕ . . .⊕Sn

is a path of length 3.

Proposition 2.14. The following statements hold.
(1) If M is a prime R-module, then SAG(M) = K0 or M is a vertex. In particular;
diam(SAG(M)) ≤ 2.
(2) If M is a semisimple R-module, then SAG(M) = K0 or every nonzero proper submodule
of M is a vertex.
(3) If M is a semisimple prime R-module, then SAG(M) = K0 or SAG(M) is a complete
graph and M is a vertex.
(4) If M is a nonsimple homogenous semisimple R-module, then SAG(M) is a complete graph
such that every nonzero submodule of M is a vertex.

Proof. (1). Suppose that SAG(M) ̸= K0 and N is a vertex in SAG(M). Then N(T : M) = 0 or
T (N : M) = 0, for a nonzero submodule T of M . Since M is a prime R-module, M(T : M) = 0

or M(N : M) = 0. This implies that M is a vertex and moreover diam(SAG(M)) ≤ 2.
(2). Suppose that SAG(M) ̸= K0 and N is a nonzero proper submodule of M . Then M =

N ⊕K, for a nonzero proper submodule K of M . Clearly, N is adjacent to K.
(3). Suppose that SAG(M) ̸= K0 and M = ⊕ISi, where Si’s are simple submodule of M .
Since M is prime, ann(M) = ann(Si), for any i ∈ I. Now if N is a nonzero submodule of M ,
then by [6, Proposition 9.4], M/N ∼= ⊕JSi, for some ∅ ≠ J ⊆ I. Thus ann(M/N) = ann(M)

and so M(N : M) = 0. Therefore K(N : M) = 0, for any nonzero submodule K of M . It
follows that SAG(M) is complete.
(4). Suppose that M = ⊕ISi, where Si’s are isomorphic simple R-modules and |I| ≥ 2. It is
clear that for any i, ann(M) = ann(Si) is a maximal ideal of R. Therefore for every nonzero
proper submodule N of M , we have (N : M) = ann(M) and so K(N : M) = 0, for every
nonzero submodule K of M . Thus N is adjacent to each nonzero submodule of M .

If we set R = Z and M = (⊕IZ2)⊕ (⊕JZ3) such that |I| ≥ 2 and |J | ≥ 2, then (⊕IZ2)⊕Z3

and ⊕IZ2 are vertices, but not adjacent. Thus the being homogenous property is required
in Proposition 2.14(4). Also the following example shows that the converse of part (3) is not
true.
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Example 2.15. In M = Zp∞ as a Z-module, since for every proper submodule H of M ,
M/H ∼= M and ann(M) = 0, we have (H : M) = 0 and so K(H : M) = 0 for each submodule
K of M . Thus SAG(M) is a complete graph and also M is a vertex.

An R-module M is called a comultiplication module if for every submodule N of M , there
exists an ideal I of R such that N = (0 :M I), i.e., N = (0 :M ann(N)).

Proposition 2.16. (1) If M = M1 ⊕M2, where M1,M2 are nonzero submodule of M , then
every nonzero submodule of M1 is adjacent to every nonzero submodule of M2.
(2) If SAG(M) = K0, then M is an indecomposable module.
(3) If M is a non simple semisimple R-module, then every nonzero proper submodule of M is
a vertex.
(4) A nonzero submodule N of M is a vertex in SAG(M) if ann(N) ̸= ann(M) or (0 :M (N :

M)) ̸= 0.
(5) If M is a multiplication module, then 0 ̸= N ≤ M is a vertex in SAG(M) if and only if
(0 :M (N : M)) ̸= 0. In particular, if M is a cyclic module, then M is not a vertex.
(6) If M is a multiplication module, then every nonzero proper submodule of M is a vertex if
MI is a vertex for every maximal ideal I of R.
(7) In a comultiplication module, every nonzero proper submodule is a vertex.
(8) If M is a not vertex, then a nonzero submodule N of M is a vertex in SAG(M) if and
only if (0 :M (N : M)) ̸= 0.

Proof. (1), (2) and (3) are easy.
(4). Since by Lemma 2.2, for any submodule N of M , we have N is a vertex in SAG(M) if
and only if N is a vertex in AG(M), the result is obtained by [8, Proposition 3.2].
(5). In a multiplication module M , we have AG(M) = SAG(M). Now the result is obtained
by [8, Proposition 3.2]. The “in particular” statement follows from this fact that every cyclic
module is multiplication.
(6). Assume that for every maximal ideal I of R, MI is a vertex and N is a nonzero proper
submodule of M . Since M is multiplication, N = MJ for some proper ideal J of R. Then
N = MJ ⊆ MI, for some maximal ideal I of R. Now since MI is a vertex, N is also a vertex.
(7). If M is a comultiplication module, then ann(N) ̸= ann(M), for any nonzero proper
submodule N of M . Now we are done by applying (4).
(8). It is clear by Lemma 2.2 and [8, Theorem 3.3].

Proposition 2.17. Let R be an Artinian ring and M be a finitely generated R-module. Then
every nonzero proper submodule N of M is a vertex in SAG(M).
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Proof. It is immediate from Lemma 2.2 and [8, Proposition 3.5].

Proposition 2.18. Every vertex in SAG(M) has finite degree if and only if every vertex in
AG(M) has finite degree.

Proof. The “ if ” part is clear. For the “only if” part, we assume that every vertex in SAG(M)

has finite degree and N is a vertex in AG(M) with infinite degree. We denote the set of
neighbors of vertex N in graphs AG(M) and SAG(M) by NA(N) and NS(N), respectively.
Suppose that NS(N) = {N1, · · · , Nt} and {K1,K2, · · · } ⊆ NA(N) \ NS(N). By Lemma 2.2,
for any i, there exists a nonzero submodule Ti of N ∩Ki such that is adjacent to both N and
Ki in SAG(M). Since NS(N) = {N1, · · · , Nt}, there exists 1 ≤ m ≤ t such that Nm = Ti, for
infinite number of i. This implies that Nm is adjacent to Ki in SAG(M), for infinite number
of i. Thus the degree of Nm in SAG(M) is infinite, a contradiction.

Theorem 2.19. Let R be a reduced ring, and M be a faithful R-module which is not prime.
Then the following statements are equivalent:
(1) SAG(M) is a finite graph;
(2) M has only finitely many submodules;
(3) Every vertex of SAG(M) has finite degree;
Consequently, if one of the these conditions holds, then SAG(M) has n vertices if and only if
M has only n nonzero proper submodules.

Proof. The proof is obtained by [8, Theorem 3.7] and Proposition 2.18.

Theorem 2.20. For any finitely generated faithful multiplication R-module M , AG(M) =

SAG(M) ∼= AG(R).

Proof. Suppose that IJ = 0, where I and J are two ideals of R. Then MI(MJ : M) =

M(MJ : M)I ⊆ MIJ = 0. On the other hand, if N(K : M) = 0, where N and K are two
submodules of M , then since M is multiplication, N = MI and K = MJ for some ideals I

and J of R and we have MIJ ⊆ MI(MJ : M) = N(K : M) = 0. Now, since M is faithful,
we conclude that IJ = 0. Also, we note that if MI = MJ , for some ideals I and J , then by
[13, Theorem 3.1], I = J . Thus there exists a one to one correspondence between the set of
all ideals of R and the set of all submodules of M . Therefore SAG(M) ∼= AG(R).

Lemma 2.21. Let N be a vertex of SAG(M) such that (N : M) is a maximal ideal of R.
Then (N : M) ∈ Ass(M) or every nonzero proper submodule of M is a vertex.
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Proof. We note that every submodule of M is a vertex in SAG(M) if and only is a vertex in
AG(M). Now the result follows from [8, Lemma 3.8].

Let M be a right R-module. The socle of M , denoted by soc(M), is the sum of all simple
submodules of M and if there are no simple submodules, we write soc(M) = 0. The set of all
nonzero submodules of M is denoted by S(M) and we use α for the cardinality of S(M). Also
the complete graph with α vertices is denoted by Kα.

Proposition 2.22. We have exactly one of the following assertions in SAG(M).
(1) Every nonzero proper submodule of M is a vertex.
(2) There exists a maximal ideal m of R such that Mm is a vertex if and only if soc(M) ̸= 0.

Proof. It is immediate by [8, Proposition 3.9] and this fact that V (SAG(M)) = V (AG(M)).

Proposition 2.23. The following statements hold.
(1) Let M be a prime module with soc(M) ̸= 0. Then SAG(M) = K0 or SAG(M) = Kα.
(2) Let M be a non simple with soc(M) ̸= 0. Then SAG(M) ̸= K0. In particular; SAG(M) ̸=
K0 when M be a non simple Artinian module.
(3) Let M be a non simple with soc(M) ≤e M . Then every nonzero submodule of M contains
a submodule that is a vertex.

Proof. (1) If M is a simple module, then SAG(M) = K0. Otherwise, since soc(M) ̸= 0, there
exists a proper simple submodule L of M . As M is prime, ann(M) = ann(L) and so ann(M)

is a maximal ideal of R. Thus ann(M) = (N : M), for every nonzero proper submodule N of
M . This implies that every two nonzero distinct submodules of M are adjacent.
(2) Suppose that M is a non simple module with soc(M) ̸= 0. Then there exists a simple
submodule xR of M , where 0 ̸= x ∈ M . Now ann(x) is a maximal ideal of R and we have
Mann(x)(xR : M) ⊆ xR(ann(x)) = 0. Thus if Mann(x) ̸= 0, then xR is a vertex of SAG(M)

and so SAG(M) ̸= K0. Now, we assume that Mann(x) = 0. Then since ann(x) is a maximal
ideal of R, we have ann(M) = ann(x). Therefore ann(M) = (xR : M) and so M(xR : M) = 0.
This shows that xR is vertex; so SAG(M) ̸= K0.
(3) Let N be a nonzero submodule of M and soc(M) ≤e M . Then soc(M)∩N = soc(N) ̸= 0.
If soc(N) ⪇ soc(M), then soc(N) is a vertex because soc(M) is a semisimple R-submodule. If
soc(N) = soc(M), then soc(M) ⊆ N and hence N ≤e M . Now since soc(M) ̸= 0, by part (2),
there exists a submodule K of M such that K is a vertex. Thus N ∩K ̸= 0 and so N ∩K is
a vertex contained N .
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Proposition 2.24. Let M be a non simple prime module. Then SAG(M) = Kα if and only
if every nonzero proper submodule of M is adjacent to M .

Proof. Since M is prime, ann(M) = ann(N), for any nonzero submodule N of M . Thus
M(N : M) = 0 if and only if K(N : M) = 0, where N and K are nonzero proper submodule
of M .

3. SAG(M) and reduced modules

Recall that an R-module M is said to be reduced if r2m = 0, for r ∈ R and m ∈ M , then
rm = 0.

Lemma 3.1. Let M be a reduced R-module. If N(N : M) = 0, for some nonzero proper
submodule N of M , then M(N : M) = 0; in particular, M is a vertex in SAG(M).

Proof. Let x ∈ M and r ∈ (N : M). Then xr ∈ N and so xr2 ∈ N(N : M) = 0. Since M is
reduced, xr = 0. This implies that M(N : M) = 0.

Lemma 3.2. Let M be a reduced R-module with M /∈ V (SAG(M)). If SAG(M) is a bipartite
graph with parts V1 and V2, then Vi = ∪N∈ViN is a submodule of M , for i = 1, 2.

Proof. Let x1, x2 ∈ V1 and r ∈ R. Then x1 ∈ N1 and x2 ∈ N2 for some N1 ∈ V1 and N2 ∈ V1;
so x1r ∈ N1 ⊆ V1. Now we have to show that x1 + x2 ∈ V1. Since N1, N2 ∈ V1, there exist
K1,K2 ∈ V2 such that Ni is adjacent to Ki for i = 1, 2. By Lemma 2.1(2), L := K1 ∩K2 ̸= 0.
If L = N1, then N1(N1 : M) = 0 because N1 is adjacent to K1. By Lemma 3.1, we have
M ∈ V (SAG(M)), a contradiction. Similarly, if L = N2, we get a contradiction. Since L is
adjacent to N1 and N2, we must have L ∈ V2. Now we show that Ni ∩ L = 0, for i = 1, 2. If
N1∩L ̸= 0, then by Lemma 2.1(1), N1∩L is adjacent to both L and N1 (since M is reduced, by
Lemma 3.1, it is easy to cheek that N1∩L ̸= L and N1∩L ̸= N1). Thus N1∩L ∈ V1∩V2 = ∅,
a contradiction. Similarly, N2 ∩ L = 0. Hence for i = 1, 2, we have Ni(L : M) ⊆ Ni ∩ L = 0

and so (N1 + N2)(L : M) = 0 (again by Lemma 3.1, we note that N1 + N2 ̸= L). Therefore
N1 +N2 is adjacent to L and hence x1 + x2 ∈ N1 +N2 ∈ V1 ⊆ V1.

With notations as in above lemma, we have the following.

Theorem 3.3. Let M be a reduced R-module with M /∈ V (SAG(M). If SAG(M) is a bipartite
graph, then the following statements hold.
(1) SAG(M) is a complete bipartite graph.
(2) u.dimM = 2.
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Proof. (1) Let V (SAG(M)) = V1 ∪ V2 where V1 ∩ V2 = ∅ and no two elements of Vi are
adjacent for i = 1, 2. Assume that N1 ∈ V1 and K2 ∈ V2. Then there exist K1 ∈ V2 and
N2 ∈ V1 such that Ni is adjacent to Ki, for i = 1, 2. If N1 ∩K2 = 0, then by Lemma 2.1(2),
N1 is adjacent to K2 and the proof is complete. Now suppose that N1 ∩ K2 ̸= 0. First we
show that N1 ∩K2 /∈ {K1, N2}. If N1 ∩K2 = K1, then K1 ⊆ N1 and since N1 is adjacent to
K1, we have K1(K1 : M) = 0. Now by Lemma 3.1, M is vertex, a contradiction. Similarly,
N1 ∩ K2 ̸= N2. Since Ni is adjacent to Ki, for i = 1, 2, we have N2 is adjacent to N1 ∩ K2

and also K1 is adjacent to N1 ∩ K2. Thus N1 ∩ K2 ∈ V1 ∩ V2, a contradiction. Therefore
N1 ∩K2 = 0 and hence N1 and K2 are adjacent; so SAG(M) is a complete bipartite graph.
(2) We first show that V1 ∩ V2 = 0. Suppose that x ∈ V1 ∩ V2. Then x ∈ N1 and x ∈ K2,
for some N1 ∈ V1 and N2 ∈ V2. Thus there exist K1 ∈ V2 and N2 ∈ V1 such that N1

adjacent K1 and N2 adjacent K2. Since M is reduced, by Lemma 3.1, we can check that
N1 ∩ K2 /∈ {K1, N2}. On the other hand, by Lemma 2.1(1), N1 ∩ K2 is adjacent to both
K1 and N2. Thus N1 ∩ K2 ∈ V1 ∩ V2, a contradiction. Next we claim that Vi’s are uniform
submodules of M . For see this, if T1 and T2 are two nonzero submodules of V1 such that
T1 ∩ T2 = 0, then T1 and T2 are adjacent. Without loss of generality, we assume that T1 ∈ V1

and T2 ∈ V2. Then T2 ⊆ V2. This implies that T2 ∈ V1 ∩V2, a contradiction. Therefore V1 is a
uniform submodule of M and similarly, V2 is uniform. To the complete of proof, we show that
V1 ⊕ V2 is essential in M . Suppose that K is a submodule of M such that K ∩ V1 ⊕ V2 = 0.
Then by Lemma 2.1(1), K is adjacent to every element of V1 and V2. Thus K ∈ V1 ∩ V2, a
contradiction.

Corollary 3.4. Let M be a reduced R-module with M /∈ V (SAG(M)). Then SAG(M) contains
no cycle if and only if SAG(M) is a star graph.

Proof. The one direction is trivial. For the other direction, assume that SAG(M) has no
cycles. Then SAG(M) is a tree and so it is a bipartite graph. Now by Theorem 3.3, SAG(M)

is a complete bipartite graph. Since SAG(M) has no cycles, we conclude that at least one of
the partitions of graph is singleton, as desired.

Lemma 3.5. If SAG(M) contains a cycle of odd length, then SAG(M) contains a triangle.

Proof. Using induction, we show that for every cycle of odd length 2n + 1 ≥ 5, there exists
a cycle with length 2k + 1 such that k < n. Assume that N1 − N2 − · · · − N2n+1 − N1 is a
cycle with odd length 2n + 1. If two distinct non consecutive Ni and Nj are adjacent, the
proof is complete. Otherwise, we set 0 ̸= L = N1 ∩ N3. Then by Lemma 2.1(1), L ̸= Ni
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for all 1 ≤ i ≤ 2n + 1 and L is adjacent to both N4 and N2n+1. Hence we have the cycle
N2n+1 − L−N4 −N5 − · · · −N2n+1, which is the desired cycle.

Proposition 3.6. For any R-module M , if gr(SAG(M)) = 4, then SAG(M) is a bipartite
graph such that its parts are not singleton. The converse is true, if M is a reduced module
with M /∈ V (SAG(M)).

Proof. Let gr(SAG(M)) = 4. By Lemma 3.5, we observe that the length of any cycle in
SAG(M) is even. Thus by [12, Proposition 1.6.1], SAG(M) is a bipartite graph and since has
a cycle of length 4, the proof is immediate. The converse follows from Theorem 3.3.

4. SAG(M) and divisible modules

Let M be an R-module. The submodule N of M is called divisible if Nr = N , for each
0 ̸= r ∈ R. Also M is called second if MI = M or MI = 0, for each ideal I of R. It is easy to
see that M is a second module if and only if ann(M) = (N : M), for every proper submodule
N of M . Clearly, if M is a second R-module, then ann(M) is a prime ideal of R, for more
details, see [11].

Theorem 4.1. Consider the following statements.
(1) ann(M) is a prime ideal and M is a divisible R/ann(M)-module.
(2) Every nonzero proper submodule of M is adjacent to M .
(3) M is a second module.
(4) SAG(M) = Kα, where α = |S(M)|.
(5) M is a non simple homogeneous semisimple module.
Then we have (1) ⇔ (2) ⇔ (3) ⇔ (4) and (5) ⇒ (3). Moreover, if M is a finitely generated
R-module or R is an Artinian ring, then we have (3) ⇔ (5).

Proof. (1) ⇒ (3) It is sufficient to show that (N : M) = ann(M), for any proper submodule
N of M . Assume that r ∈ (N : M) and Mr ̸= 0. Then Mr ⊆ N and since M is a divisible
R/ann(M)-module M = Mr ⊆ N . Thus M = N , a contradiction. Hence Mr = 0 and so
(N : M) = ann(M).
(3) ⇒ (4) Let N and K be two nonzero proper submodules of M . By (3), (N : M) = ann(M)

and so M(N : M) = 0. Thus K(N : M) = 0 and hence SAG(M) = Kα.
(4) ⇒ (2) is clear.
(2) ⇒ (1) For any nonzero proper submodule N of M , we have M(N : M) = 0. Thus
(N : M) = ann(M), i.e., M is a second R-module. This implies that ann(M) is a prime ideal
of R. On the other hand, for any r /∈ ann(M) we have 0 ̸= Mr = MRr = MrR = M , because
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M is second.
(5) ⇒ (3) Similar to proof of Proposition 2.23(1), we have (N : M) = ann(M), for any proper
submodule N of M , i.e., M is second.
(3) ⇒ (5) Since M is second, (N : M) = ann(M) for any nonzero proper submodule N of M
and also ann(M) is a prime ideal of R. Now if R is Artinian, ann(M) is a maximal ideal of
R. Also if M is a finitely generated R-module, (N : M) = ann(M) is a maximal ideal of R,
for some maximal submodule N of M . Thus in any case, R/ann(M) is a field, and so M is a
homogeneous semisimple module as an R/P -module and as an R-module, where P = ann(M).

Proposition 4.2. Let R be a ring and M be a divisible R-module. Then SAG(M) = K0 or
SAG(M) = Kα, where α = |S(M)|.

Proof. If M is simple, then SAG(M) = K0. Thus we assume that M is not simple. For
any nonzero proper submodule N of M , we have (N : M) = 0. Because if (N : M) ̸= 0,
then M = M(N : M) ⊆ N and so M = N , a contradiction. Thus (N : M) = 0, and so
K(N : M) = 0, for any submodule K of M .

Proposition 4.3. Let M be an R-module which contains a nonzero divisible submodule, say
N . Then SAG(M) = K0 or every nonzero submodule of M is a vertex in SAG(M).

Proof. If there exists a nonzero proper submodule K of M such that (K : M) = 0, then
L(K : M) = 0, for any L ≤ M and so every nonzero submodule of M is a vertex. Thus we
assume that (K : M) ̸= 0, for any 0 ̸= K ≤ M . Now, if N is not minimal, then there exists
0 ̸= K ≨ N and since N is divisible, N = N(K : M) ⊆ M(K : M) ⊆ K, a contradiction.
Thus we may assume that N is minimal. If nr = 0, for some 0 ̸= n ∈ N and 0 ̸= r ∈ R, then
nRr = Nr = 0, a contradiction. Thus nr ̸= 0, for any 0 ̸= n ∈ N and 0 ̸= r ∈ R. It follows
that R ∼= nR = N . For any 0 ̸= r ∈ R, since Nr = N , we conclude that Rr = R. Therefore
R is a field and by Theorem 2.10, the proof is complete.

Corollary 4.4. If M is a multiplication R-module which contains a nonzero divisible submod-
ule, then SAG(M) = K0.

Proof. If SAG(M) ̸= K0, then by Proposition 4.3, M is a vertex in SAG(M) and so M(N :

M) = 0, for a nonzero submodule N of M . Now, since M is multiplication, N = M(N : M) =

0, a contradiction. Thus SAG(M) = K0.



98 Alg. Struc. Appl. Vol. 7 No. 1 (2020) 83-99.

Proposition 4.5. Let M be an R-module with SAG(M) = K0 and N be a nonzero submodule
of M . Then:
(1) If N is a second submodule of M , then N is simple.
(2) If N is a divisible submodule of M , then R is a field.

Proof. (1). On the contrary, assume that 0 ̸= K ≤ N . If (K : N) = 0, then since (K : M) ⊆
(K : N) = 0, we have (K : M) = 0. This implies that K is a vertex, a contradiction. Thus
(K : N) ̸= 0. We note that N(K : M) ⊆ N(K : N). Now if N(K : N) = 0, then N(K : M) =

0 and so K is a vertex, which again a contradiction. Therefore N = N(K : N) ⊆ K because
N is second. Thus K = N , and so N is a simple submodule of M .
(2). Let N be a divisible submodule of M . Since every divisible submodule is a second
submodule, by part (1), N is simple. Thus N = nR, for any 0 ̸= n ∈ N . Now, clearly r → nr

is an R-isomorphism of R into N . Since Nr = N , for any 0 ̸= r ∈ R, we have R = Rr and
hence R is a field.

Proposition 4.6. Let R be an integral domain and M be an R-module which contains a
nonzero divisible submodule. If every submodule of M is cyclic, then SAG(M) is a complete
graph.

Proof. The proof follows from [15, Theorem 2.5].

Proposition 4.7. Let S be an integral domain and R be a subring of S such that |R| < |S|.
Then every nonzero R-submodule of S is a vertex in SAG(SR).

Proof. We show that (sR :R S) = 0, for any 0 ̸= s ∈ S. If there exists 0 ̸= r ∈ (sR :R S), then
Sr ⊆ sR. Since |Sr| = |S| and |sR| = |R|, we must have |S| ≤ |R|, a contradiction.

We conclude the paper with the following result.

Corollary 4.8. Let R be an integral domain and X be a set of commuting indeterminates
over the ring R. If |R| < |R[X]|, then every nonzero R-submodule of R[X] is a vertex in
SAG(R[X]R).
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