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ON SOME DESIGNS CONSTRUCTED FROM THE GROUPS PSL2(q),

q = 53, 61, 64

REZA KAHKESHANI∗

Abstract. In this paper, we use the primitive permutation representations of the simple

groups PSL2(53), PSL2(61) and PSL2(64) and construct 1-designs by the Key-Moori Method

1. It is shown that the groups PSL2(53), PSL2(53):2, PSL2(61), PSL2(61):2, PSL2(64),

PSL2(64):2, PSL2(64):3 and PSL2(64):6 appear as the full automorphism groups of these

obtained designs.

1. Introduction

Combinatorics and Algebra interact in a substantial and nice fashion when we study combi-

natorial structures using algebraic methods. As it is seen, the combinatorics might be designs

and the algebra could be group theory. Construction of Witt designs using Mathieu groups

is a classical result which leads us to this interesting interaction. In 2002, a method for con-

structing 1-designs and regular graphs from the primitive representations of a group, known

DOI: 10.29252/as.2020.1718

MSC(2010): 05E15; 05E20; 05B05; 20D05.

Keywords: Design, Automorphism group, Projective special linear group.

Received: 25 July 2019, Accepted: 08 Jan 2020.

∗Corresponding author

c⃝ 2020 Yazd University.

59



60 Alg. Struc. Appl. Vol. 2 No. 1 (2020) 59-67.

as the Key-Moori Method 1, is described in [10, 11]. Key and Moori [10] used the primitive

actions of the Janko groups J1 and J2, and proved that J1 and J2 appear as the full auto-

morphism group of these combinatorial structures. From a geometric viewpoint, the designs

that admitting fairly large automorphism groups are generally most interesting. In [12], the

authors applied the Key-Moori method 1 to the groups PSpn(q), A6 and A9. They wanted to

obtain 1-designs from a group G such that their automorphism groups and Aut(G) have no

containment relationship. In [6, 7], Darafsheh et al. considered all the primitive permutation

representations of the groups PSL2(q), where q ≤ 35 is a prime power, and found 1-designs

and their automorphism groups. In [8], Darafsheh et al. considered the primitive actions of

the groups PSL2(q), where q = 37, 41, 43, 47, 49, and constructed 1-designs and found their

automorphism groups. Darafsheh [5] also considered the group PSL2(q), where q is a power

of 2, and found two classes of 1-designs such that one of them is invariant under the full auto-

morphism group Sq+1. Moreover, the author [9] examined 1-designs and their automorphism

groups constructed from the primitive representations of PSL2(59).

In this paper, we employ the Key-Moori Method 1 and construct 1-designs from all the primi-

tive permutation representations of the groups PSL2(53), PSL2(61) and PSL2(64). We obtain

the parameters of the constructed 1-designs and find their automorphism groups. We show

that PSL2(53), PSL2(53):2, PSL2(61), PSL2(61):2, PSL2(64), PSL2(64):2, PSL2(64):3 and

PSL2(64):6 appear as the full automorphism groups of these 1-designs.

2. Terminology and notation

For the structure of groups and their maximal subgroups, we follow the notation of the

atlas of finite groups [4]. The groups G.H, G:H and G.H denote a general extension, a split

extension and a non-split extension, respectively. A cyclic group of order m is denoted by m.

When p is prime, pn indicates the elementary abelian group of that order.

The incidence structure S = (P,B, I) consists of a point set P, a block set B and an incidence

relation I ⊆ P ×B. The symbol p I B means that (p,B) ∈ I. If I is the membership relation

∈ then we can write p ∈ B instead of (p,B) ∈ I. The incidence structure D = (P,B, I) is a

t-(v, k, λ) design if |P| = v, |B| = k for any B ∈ B and every t points of P is incident with

exactly λ blocks. Set |B| = b. The design D is called symmetric if v = b. Set λs (s ≤ t) be

the number of blocks through any set of s points. It is deduced that λs is independent of the

set and equal to λ
(
ν−s
t−s

)
/
(
k−s
t−s

)
. Also, D is an s-(v, k, λs) design as well. A t-(v, k, λ) design is

trivial if any subset of P with cardinality k is a block. The dual of the incidence structure

S = (P,B, I) is St = (B,P, It), where It = {(B,P) | (P,B) ∈ I}. If D is a t-(v, k, λ) design

then Dt is a design with b points and the block size λ1. The incidence matrix of D = (P,B, I)
is a (0, 1)-matrix M of size |B|× |P| whose rows and columns are labeled by blocks and points,
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respectively, such that entry (B, p) is 1 if p is incidence with B, and 0 otherwise. It is clear

that the incidence matrix of Dt is M t, the transpose of M . Two structures S = (P,B, I)
and S ′

= (P ′
,B′

, I ′
) are isomorphic if there is a one to one correspondence θ : P → P ′

such

that p I B ←→ θ(p) I ′
θ(B) for all p ∈ P and B ∈ B. In this case, we write S ∼= S ′

. The

incidence structure S is called to be self-dual if S ∼= St. An isomorphism of S onto itself is an

automorphism of S. The set of all the automorphisms of S is a group and denoted by Aut(S).
See [1, 3] for further properties of designs.

Let Fq be the Galois field of order q, where q = pn is prime power, and let F ∗
q = Fq \ {0}.

Denote by GL2(q) the group of all the invertible 2× 2 matrices over the finite field Fq and let

SL2(q) be the subgroup of GL2(q) consisting of the matrices with determinant 1. We know

that there is a natural action of GL2(q) on the 1-dimensional subspaces of the vector space F 2
q

such that its kernel is N = {λI | λ ∈ F ∗
q }. The projective general linear group PGL2(q) is the

quotient GL2(q)/N . Furthermore, SL2(q) acts on the same set with the kernel N ∩SL2(q) and

the projective special linear group, denoted by PSL2(q), is defined to be SL2(q)/(N∩SL2(q)).

It is known that |PGL2(q)| = q(q2 − 1) and |PSL2(q)| = q(q2 − 1)/(2, q − 1).

Lemma 2.1. [16] A maximal subgroup of PSL2(q) has one of the following shapes:

• A dihedral group of order 2(q− ε)/(2, q− 1) except ε = 1, q = 3, 5, 7, 9, 11 and ε = −1,
q = 2, 7, 9.

• A solvable group of order q(q − 1)/(2, q − 1).

• A4 if q > 3 is prime and q ≡ 3, 13, 27, 37 (mod 40).

• S4 if q is an odd prime number and q ≡ ±1 (mod 8).

• A5 if q = 5m, 4m and m is prime, q is prime and q ≡ ±1 (mod 5), or q is the square

of an odd prime number and q ≡ −1 (mod 5).

• PSL(2, r) if q = rm and m is odd prime.

• PGL(2, r) if q = r2.

For further properties of the linear groups, we refer the reader to [15, 16].

3. The construction method

Suppose that G is a permutation group acting on a set Ω of size n. The group G naturally

acts on Ω × Ω by (α, β)g = (αg, βg) for all g ∈ G and α, β ∈ Ω. An orbit of G on Ω × Ω is

called an orbital. If O is an orbital then O∗ = {(α, β) | (β, α) ∈ O}, called the paired orbital of

O, is also an orbital. The orbital O is self-paired if O = O∗. Now, let α ∈ Ω and ∆ ̸= {α} be
an orbit of the stabilizer Gα. It is easy to see that ∆̄ = {(α, δ)g | δ ∈ ∆, g ∈ G} is an orbital.

If ∆̄ is a self-paired orbital then ∆ is called to be self-paired. In this paper, our construction

for 1-designs is based on the following method:
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Theorem 3.1. (Key-Moori Method 1)[10, 11] Let G be a finite primitive permutation group

acting on a set Ω of size n. Let α ∈ Ω and ∆ ≠ {α} be an orbit of the stabilizer Gα. Then,

the incidence structure D = (Ω,∆G) is a symmetric 1-(n, |∆|, |∆|) design. Moreover, if ∆ is

a self-paired orbit then D is self-dual and G acts as an automorphism group on D such that it

is primitive on points and blocks of D.

If ∆ be any union of the orbits of Gα, including the singleton orbit {α}, then (Ω,∆G) is

still a symmetric 1-design with the group operating. Conversely, if G acts primitively on the

points and the blocks of a symmetric 1-design D then D = (Ω,∆G), where ∆ is a union of the

orbits of a stabilizer [13].

Theorem 3.2. [14] If D is a 1-design constructed by the Key-Moori Method 1, then G ≤
Aut(D).

4. 1-Designs from the groups PSL2(53), PSL2(61) and PSL2(64)

Consider the projective special linear groups PSL2(53), PSL2(61) and PSL2(64). Magma

shows that these groups have four, five and five maximal subgroups, up to conjugacy, respec-

tively. Magma gives us the orders of the maximal subgroups and then, as it is noted in Section

2, we can determine their shapes. Now, by a computer proram in Magma [2], let G be one of

these linear groups and M be a maximal subgroup of G. If Ω is the set of the right cosets of

M in G then G acts primitively on Ω. Choose α ∈ Ω. Consider the action of Gα on Ω and let

∆ be an orbit of the stabilizer such that |∆| ≥ 2. Theorem 3.1 implies that D = (Ω,∆G) is a

1-(n, |∆|, |∆|) symmetric design.

The information we obtain about all the primitive permutation representations of PSL2(53),

PSL2(61) and PSL2(64) are listed in Tables 1, 2 and 3, respectively. The shape of a maximal

subgroup and its index are written under the columns ‘Max. Sub.’ and ‘Degree’, respectively.

The headings ‘#’ and ‘Length’ indicate the number of non-singleton orbits of a stabilizer and

their lengths, respectively, such that the entry ‘m(n)’ shows that there are n orbits of length

m. Moreover, the designs constructed by these orbits are denoted by Dm(n). For a constructed

1-design, the order of the automorphism group is shown in the last column. Computations

with Magma show that PSL2(53), PSL2(61) and PSL2(64) have maximal subgroups of orders

1378, 1830 and 4032, respectively, such that they are solvable. For these maximal subgroups,

the action of the group on Ω is 2-transitive and so, the constructed 1-design is trivial and

will not be considered. Moreover, Magma shows that PSL2(61) have two maximal subgroups,

up to conjugacy, isomorphic to A5 such that they give us the same results. Therefore, their

results are written in a same row.
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Max. Sub. Degree # Length |Aut(D)|

A4 6201 532

4(16)

4(1)

6(6)

12(496)

12(12)

74412

148824

148824

74412

148824

D52 1431 42

13(2)

26(24)

52(2)

52(13)

74412

74412

74412

148824

D54 1378 39

27(24)

27(1)

54(13)

74412

148824

148824

Table 1: 1-Designs from the group PSL2(53)

Max. Sub. Degree # Length |Aut(D)|

D62 1830 45

31(28)

31(1)

62(15)

113460

226920

226920

A5 1891 41

6(1)

10(1)

12(2)

20(4)

30(5)

60(27)

113460

113460

113460

113460

113460

113460

D60 1891 48

15(2)

30(28)

60(2)

60(15)

113460

113460

113460

226920

Table 2: 1-Designs from the group PSL2(61)
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Max. Sub. Degree # Length |Aut(D)|

D130 2016 32

65(24)

65(6)

65(1)

262080

524160

1572480

A5 4368 89

12(6)

15(3)

15(2)

20(6)

20(3)

20(1)

60(54)

60(9)

60(4)

262080

524160

786240

262080

524160

1572480

262080

524160

786240

D126 2080 33

63(24)

63(6)

63(1)

126(1)

262080

524160

1572480

65!

PGL2(8) 520 9

56(3)

63(1)

72(3)

72(1)

524160

1572480

524160

1572480

Table 3: 1-Designs from the group PSL2(64)

Theorem 4.1. (i) For PSL2(53) of degree 6201, the designs D4(16), D4(1), D6(6), D12(496)

and D12(12) with parameters 1-(6201, 4, 4), 1-(6201, 4, 4), 1-(6201, 6, 6) 1-(6201, 12, 12) and 1-

(6201, 12, 12) are obtained, respectively, such that Aut(D4(16)) = Aut(D12(496)) = PSL2(53)

and Aut(D4(1)) ∼= Aut(D6(6)) ∼= Aut(D12(12)) ∼= PSL2(53):2.

(ii) For PSL2(53) of degree 1431, the designs D13(2), D26(24), D52(2) and D52(13) with

parameters 1-(1431, 13, 13), 1-(1431, 26, 26), 1-(1431, 52, 52) and 1-(1431, 52, 52) are con-

structed, respectively, such that Aut(D13(2)) = Aut(D26(24)) = Aut(D52(2)) = PSL2(53) and

Aut(D52(13)) ∼= PSL2(53):2.

(iii) For PSL2(53) of degree 1378, the three designs D27(1), D27(24) and D54(13) with parame-

ters 1-(1378, 27, 27), 1-(1378, 27, 27) and 1-(1378, 54, 54) are obtained, respectively. Moreover,

Aut(D27(24)) = PSL2(53) and Aut(D27(1)) ∼= Aut(D54(13)) ∼= PSL2(53):2.
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Proof. By Magma computations and Theorem 3.1, the designs with the above parameters are

constructed.

For D4(16), D12(496), D13(2), D26(24), D52(2) and D27(24), Magma shows that their automor-

phism groups have order 74412. Since |PSL2(53)| = 74412, Theorem 3.2 implies that the

automorphism groups of these 1-designs are the same and equal to PSL2(53).

Computations with Magma show that the automorphism groups of D4(1), D6(6), D12(12),

D52(13), D27(1) and D54(13) are isomorphic to each other. Thus, consider the 1-design D4(1).

By Magma, |Aut(D4(1))| = 148824. Theorem 3.2 implies that there exists a subgroup N

of Aut(D4(1)) isomorphic to PSL2(53). Since |Aut(D4(1))/N | = 148824/74412 = 2, N E
Aut(D4(1)). Moreover, we find such a subgroup N and an involution with the cycle type

2675128 in Aut(D4(1)) \N . So, Aut(D4(1)) ∼= PSL2(53):2.

Similarly, the following theorem is deduced. Note that |PSL2(61)| = 113460.

Theorem 4.2. (i) For PSL2(61) of degree 1830, the designs D31(28), D31(1) and D62(15) with

parameters 1-(1830, 31, 31), 1-(1830, 31, 31) and 1-(1830, 62, 62) are constructed, respectively,

such that Aut(D31(28)) = PSL2(61) and Aut(D31(1)) ∼= Aut(D62(15)) ∼= PSL2(61):2.

(ii) For PSL2(61) of degree 1891, the designs D6(1), D10(1), D12(12), D20(4), D30(5) and

D60(27) with parameters 1-(1891, 6, 6), 1-(1891, 10, 10), 1-(1891, 12, 12), 1-(1891, 20, 20), 1-

(1891, 30, 30) and 1-(1891, 60, 60) are obtained, respectively, such that their automorphism

groups are the same and equal to PSL2(61).

(iii) For PSL2(61) of degree 1891, the four designs D15(2), D30(28), D60(2) and D60(15)

with parameters 1-(1891, 15, 15), 1-(1891, 30, 30), 1-(1891, 60, 60) and 1-(1891, 60, 60) are ob-

tained, respectively, such that Aut(D15(2)) = Aut(D30(28)) = Aut(D60(2)) = PSL2(61) and

Aut(D60(15)) ∼= PSL2(61):2.

Theorem 4.3. (i) For PSL2(64) of degree 2016, the designs D65(24), D65(6) and D65(1)

with the same parameters 1-(2016, 65, 65) are obtained such that Aut(D65(24)) = PSL2(64),

Aut(D65(6)) ∼= PSL2(64):2 and Aut(D65(1)) ∼= PSL2(64):6.

(ii) For PSL2(64) of degree 4368, the nine designs D12(6), D15(3), D15(2), D20(6),

D20(3), D20(1), D60(54), D60(9) and D60(4) with parameters 1-(4368, 12, 12), 1-(4368, 15, 15),

1-(4368, 15, 15), 1-(4368, 20, 20), 1-(4368, 20, 20), 1-(4368, 20, 20), 1-(4368, 60, 60), 1-

(4368, 60, 60) and 1-(4368, 60, 60) are constructed, respectively, such that Aut(D12(6)) =

Aut(D20(6)) = Aut(D60(54)) = PSL2(64), Aut(D15(3)) ∼= Aut(D20(3)) ∼= Aut(D60(9)) ∼=
PSL2(64):2, Aut(D15(2)) ∼= Aut(D60(4)) ∼= PSL2(64):3 and Aut(D20(1)) ∼= PSL2(64):6.

(iii) For PSL2(64) of degree 2080, the designs D63(24), D63(6), D63(1),1 and D126(1) with pa-

rameters 1-(2080, 63, 63), 1-(2080, 63, 63), 1-(2080, 63, 63) and 1-(2080, 126, 126) are obtained,
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respectively, such that Aut(D63(24)) = PSL2(64), Aut(D63(6)) ∼= PSL2(64):2, Aut(D63(1),1) ∼=
PSL2(64):6 and Aut(D126(1)) ∼= S65.

(iv) For PSL2(64) of degree 520, the four designs D56(3), D63(1),2, D72(3) and D72(1) with pa-

rameters 1-(520, 56, 56), 1-(520, 63, 63), 1-(520, 72, 72) and 1-(520, 72, 72) are obtained, respec-

tively, such that Aut(D56(3)) ∼= Aut(D72(3)) ∼= PSL2(64):2 and Aut(D63(1),2) ∼= Aut(D72(1)) ∼=
PSL2(64):6.

Proof. Computations with Magma and Theorem 3.1 give us the designs with the above pa-

rameters.

Magma shows that the orders of the automorphism groups of D65(24), D12(6), D20(6), D60(54)

and D63(24) are 262080. By Theorem 3.2, the automorphism groups of these 1-designs are the

same and equal to PSL2(64) since |PSL2(64)| = 262080.

Magma computations show that the automorphism groups of D65(6), D15(3), D20(3), D60(9),

D63(6), D56(3) and D72(3) are isomorphic to each other. Consider the 1-design D65(6). By

Theorem 3.2 and Magma, we have PSL2(64) ≤ Aut(D65(6)) and |Aut(D65(6))| = 524160 =

2|PSL2(64)|. Furthermore, we find a subgroup N ≤ Aut(D65(6)) such that N ∼= PSL2(64)

and an involution with the cycle type 22142184 in Aut(D65(6)) \ N . Therefore, Aut(D65(6)) ∼=
PSL2(64):2.

By Magma, Aut(D15(2)) ∼= Aut(D60(4)) and |Aut(D15(2))| = 786240 = 3|PSL2(64)|. Magma

computations show that there exists a normal subgroup N of Aut(D15(2)) such that N ∼=
PSL2(64). Also, we find a permutation with the cycle type 31449121 in Aut(D65(6)) \N . This

implies that Aut(D15(2)) ∼= PSL2(64):3.

We can see that the automorphism groups of D65(1), D20(1), D63(1),1, D63(1),2 and D72(1) are

isomorphic to each other and |Aut(D65(1))| = 1572480 = 6|PSL2(64)|. By computations with

Magma, we find a normal subgroup N of Aut(D65(1)) such that N ∼= PSL2(64). Moreover, we

find a cyclic subgroup H of Aut(D65(1)) such that |H| = 6 and N ∩H = 1. So, Aut(D65(1)) ∼=
PSL2(64):6.

Finally, consider the 1-design D126(1). By Magma, |Aut(D126(1))| = 65! and a composition

series for Aut(D126(1)) is 1 ≤ A65 ≤ Aut(D126(1)). This implies that Aut(D126(1)) ∼= A65:2 ∼=
S65.
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