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A NEW LOWER BOUND FOR COHOMOLOGICAL DIMENSION

ALIREZA NAZARI∗ AND ASGHAR FAROKHI

Abstract. Let (R,m) be a Noetherian local ring, M a finitely generated R-module, and a

an ideal of R. We define the a-minimum dimension d(a,M) of M by

d(a,M) = Min{dim R

p+ a
: p ∈ AsshR(M)}.

In this paper, we show that cd(a,M) ≥ dimM−d(a,M) and we give some sufficient conditions

and characterization for the equality to hold true.

1. Introduction

Throughout this paper, let (R,m) be a commutative Noetherian local ring (with identity)

and let M be a finitely generated R-module. For an R-module M , the i-th local cohomology

module of M with respect to a is defined as

Hi
a(M) = lim−−→

n≥1

ExtiR(
R

an
,M).
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For the basic properties of local cohomology the reader can refer to [1] of Brodmann and

Sharp.

Recall that the cohomological dimension of M with respect to a is defined as

cd(a,M) := max{i ∈ Z : Hi
a(M) ̸= 0}.

The cohomological dimension has been studied by several authors; see, for example, Faltings

[5], Hartshorne [6], Huneke-Lyubeznik [7] and Varbaro [10] . In particular in [5] and [7], several

upper bounds for cohomological dimension were obtained. It follows from [1, Theorem 6.2.7]

that cd(a,M) is greater than or equal to the grade(a,M). A natural question to ask is under

what conditions one can obtain a better lower bound for cd(a,M). The main aim of this article

is to establish a new lower bound for cohomological dimension of finitely generated modules

over a local ring.

Throughout this article, we denote {p ∈ SpecR : p ⊇ a} by V(a), MinV(a) by Min(a), and

{p ∈ AssR(M) : dim R
p = dimM} by AsshR(M). The radical of a, denoted by

√
a, is defined

to be the set {x ∈ R : xn ∈ a for some n ∈ N}. Recall that an R-module M is called a-cofinite

if Supp(M) ⊆ V (a) and ExtiR(
R
a ,M) is finitely generated for all i ≥ 0. For any unexplained

notation and terminology, we refer the reader to [1] and [8].

2. Main results

Definition 2.1. Let M be a finitely generated R-module, and let a be an ideal of R. We

define the a-minimum dimension d(a,M) of M by

d(a,M) = Min{dim R

p+ a
: p ∈ AsshR(M)}.

To prove the main results of this paper, we need the following lemmas.

Lemma 2.2. (see [4, Lemma 2.5]) Let M be a finitely generated R-module, and let a be an

ideal of R. Then

cd(a+Rx,M) ≤ cd(a,M) + 1

for any element x ∈ m.

Lemma 2.3. Let M be a finitely generated R-module and a be an ideal of R with d(a,M) > 0.

Then there exists an element x ∈ m such that dim M
xM = dimM−1 and d(a, M

xM ) ≤ d(a,M)−1.

Proof. Since d(a,M) > 0, we have
√
p+ a ̸= m for all p ∈ AsshR(M), and so there exists

x ∈ m−
∪

q∈Min(p+a),p∈AsshR(M)

q.
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By the definition, there exists p ∈ AsshR(M) such that d(a,M) = dim M
(p+a)M . Now let

q ∈ AsshR(
M

(p+Rx)M ), then by the choice of x we have

dim
R

q
= dim

M

(p+Rx)M
= dimM − 1 = dim

M

xM
.

As AsshR(
M

(p+Rx)M ) ⊆ Supp M
xM , we have q ∈ Supp M

xM , and so by the above equalities we

have q ∈ AsshR(
M
xM ). It follows that

d(a,
M

xM
) ≤ dim

M

(q+ a)M
≤ dim

M

(p+ a+Rx)M
= dim

M

(p+ a)M
− 1 = d(a,M)− 1.

This element x has the requested properties.

Theorem 2.4. Let M be a finitely generated R-module, and let a be an ideal of R. Then

cd(a,M) ≥ dimM − d(a,M).

Proof. We prove this by induction on n = d(a,M). If d(a,M) = 0 then we have dim M
(p+a)M = 0

for some p ∈ AsshR(M) and so
√
p+ a = m for some p ∈ AsshR(M). It follows from [1,

Exercise 6.1.9 ] and Non-vanishing Theorem [1, 6.1.4] that

HdimM
a (M)⊗ R

p
∼= HdimM

a (
M

pM
) ∼= HdimM

a+p (
M

pM
) ∼= H

dim M
pM

m (
M

pM
) ̸= 0,

and so HdimM
a (M) ̸= 0.

Now suppose, inductively, that d(a,M) > 0, and the result has been proved for all finitely

generated R-modules N with d(a, N) < d(a,M). By Lemma 2.3, there exists an element x ∈ m

such that dimM = dim M
xM + 1 and d(a,M) ≥ d(a, M

xM ) + 1. So by induction hypothesis we

have cd(a,M/xM) ≥ dim M
xM − d(a, M

xM ). It follows that

dimM − d(a,M) = dim M
xM + 1− d(a,M)

≤ dim M
xM − d(a, M

xM )

[by induction hypothesis] ≤ cd(a, M
xM )

[4, Theorem 2.2] ≤ cd(a,M).

This completes the proof.

The following examples shows that the equality does not hold in general.

Example 2.5. Let M be a finitely generated R-module such that
∩

p∈AsshR(M)

p * q for some q

in AssR(M). Then for x ∈
∩

p∈AsshR(M)

p− q we have

cd(Rx,M) = 1 > 0 = dim(M)− d(Rx,M).
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For example, let R = K[[X,Y, Z]], M = K[[X,Y,Z]]
⟨X⟩

∩
⟨Y,Z⟩ , and x = X, where K is a field and X,Y, Z

are independent indeterminates.

Example 2.6. Let K be a field of characteristic 0. Let R′ := K[X1, X2, X3], m′ :=

(X1, X2, X3) and b = (X2
2 − X2

1 − X3
1 ). Set R := (R

′

b )m′
b

and let p be the extension of

the ideal

(X1 +X2 −X2X3, (X3 − 1)2(X1 + 1)− 1)

of R′ to R. Then R is a 2-dimensional local domain, and p is a prime ideal of R with dim R
p = 1

(see [1, Exercise 8.2.9]), and we have

cd(p, R) = 2 > 1 = dim(R)− d(p, R).

Therefore, it is natural to ask, under what conditions does the equality hold?

Our second aim is to find such conditions. The following theorem gives us a characterization

for the equality cd(a,M) = dimM − d(a,M).

Theorem 2.7. Let M be a finitely generated R-module, and let a be an ideal of R. Then the

following statements are equivalent:

(i) cd(a,M) = dimM − d(a,M);

(ii) There exists a sequence x1, x2, ..., xl, where l = d(a,M), such that for each i = 1, 2, ..., l

xi ∈ m−
∪

q∈Min(p+a+Rx1+···+Rxi−1)
p∈AsshR(M)

q

and H1
Rxi

(Hc+i−1
a+Rx1+···+Rxi−1

(M)) ̸= 0, where c = cd(a,M).

Proof. (i)⇒(ii) We use induction on l = d(a,M). When l = 0, there is nothing to prove.

So suppose that d(a,M) = l > 0 and that the result has been proved for each ideal b with

d(b,M) < l. Choose x1 ∈ m−
∪

q∈Min(p+a)
p∈AsshR(M)

q; then we have

dimM − d(a,M) = dimM − d(a+Rx1,M)− 1

≤ cd(a+Rx1,M)− 1

[by lemma 2.2] ≤ cd(a,M).

So cd(a + Rx1,M) = dimM − d(a + Rx1,M) and d(a + Rx1,M) = l − 1. Therefore, by the

inductive hypothesis, there exists a sequence x2, x3, ..., xl ∈ m such that, for each i = 2, 3, ..., l,

xi ∈ m−
∪

q∈Min(p+a+Rx1+···+Rxi−1)

p∈AsshR(M)

q
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and H1
Rxi

(Hc+i−1
a+Rx1+···+Rxi−1

(M)) ̸= 0.

On the other hand, we have cd(a+Rx1,M) = cd(a,M) + 1 and so Hc+1
a+Rx(M) ̸= 0. By [1,

Proposition 8.1.2 (i)], there is an exact sequence

Hc
a(M) −→ Hc

a(Mx1) −→ Hc+1
a+Rx1

(M) −→ 0.

It follows that the natural homomorphism Hc
a(M) −→ Hc

a(Mx1) is not surjective. So

H1
Rx1

(Hc
a(M)) ̸= 0 by [1, Remark 2.2.17]. This completes the proof of (i)⇒(ii).

(ii)⇒(i) For d(a,M) = 0 the result is obvious. Now suppose, inductively, that d(a,M) =

l > 0 and the result has been proved for each ideal b with d(b,M) < l. Assume that there

exists a sequence x1, x2, ..., xl ∈ m such that, for each i = 1, 2, ..., l,

xi ∈ m−
∪

q∈Min(p+a+Rx1+···+Rxi−1)
p∈AsshR(M)

q

and H1
Rxi

(Hc+i−1
a+Rx1+···+Rxi−1

(M)) ̸= 0.

Note that d(a + Rx1,M) = d(a,M) − 1 = l − 1, and so, by the inductive hypothesis, we

have cd(a + Rx1,M) = dim(M) − d(a + Rx1,M). It follows that cd(a + Rx1,M) − 1 =

dim(M)−d(a,M). Since H1
Rx1

(Hc
a(M)) ̸= 0, the natural homomorphism Hc

a(M) −→ Hc
a(Mx1)

is not surjective by [1, Remark 2.2.17] and so Hc+1
a+Rx1

(M) ̸= 0 by [1, Proposition 8.1.2 (i)].

Hence cd(a+Rx1,M) = cd(a,M) + 1 and the result follows.

Recall that a sequence x1, x2, ..., xl ∈ a is called an a-filter regular sequence of M if xi /∈ p

for all p ∈ AssR(
M

⟨x1,x2,...,xi−1⟩M ) − V(a) and all i = 1, 2, ..., l. For an R-module M , we shall

denote M
Γa(M) by M .

Lemma 2.8. Let M be a finitely generated R-module, and let a be an ideal of R such that

Γa(M) ̸= M . If M is an equidimensional R-module, then

(i) M is an equidimensional R-module and we have dimM = dimM , and d(a,M) =

d(a,M).

(ii) If R is a catenary ring then M
xM

is an equidimensional R-module for each a-filter regular

element x of M .

Proof. (i) This is immediate from the fact that

MinAssR(M) = MinAssR(M)−V(a) = AsshR(M)−V(a) = AsshR(M).

(ii) Let q ∈ MinAssR(
M
xM

). So we have q ∈ Min(AnnR(M) + Rx). It follows that there

exists p ∈ Min(AnnR(M)) = AsshR(M) such that q ∈ Min(p+ Rx). As R is a catenary ring,
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we have h(q) = h(p) + 1 and so dim(R/q) = dim(R/p)− 1.

It follows that

dim(R/q) = dim(R/p)− 1 = dim(M)− 1 = dim(
M

xM
).

Hence q ∈ AsshR(
M
xM

) and so the claim follows.

Theorem 2.9. Let R be a catenary ring, M a finitely generated equidimensional R-module,

and l = dim(M)− d(a,M). If there exists an a-filter regular sequence x1, x2, ..., xl of M such

that d(a,Mi−1) = d(a,Mi), where M0 = M and Mi =
Mi−1

xiMi−1
, for all i = 1, 2, ..., l, then

cd(a,M) = dim(M)− d(a,M).

Proof. By Theorem 2.4, it is enough for us to show that cd(a,M) ≤ l. We argue by induction

on l. When l = 0, sinceM is equidimensional, by the definition of d(a,M) we haveM = Γa(M)

and so cd(a,M) = dim(M)− d(a,M).

Now suppose, inductively, that l > 0 and the result has been proved for smaller values

of l. By the pervious lemma, in this case, M is an equidimensional R-module, and we have

dim(M) = dim(M), d(a,M) = d(a,M), and cd(a,M) = cd(a,M). So in view of the inductive

hypothesis we can replace M by M , and assume that M is a-torsion free. The exact sequence

0 −→ M
x1−→ M −→ M1 −→ 0

induces an exact sequence

Hi−1
a (M1) −→ Hi

a(M)
x1−→ Hi

a(M).

Since d(a,M) = d(a,M1) and dim(M1) = dim(M)− 1, we obtain

dim(M1)− d(a,M1) = l − 1.

By the pervious lemma, M1 is an equidimensional R-module, so by induction hypothesis

Hi
a(M1) = 0 for all i > l− 1. Therefore, in view of the above exact sequence, (0 :

Hi
a(M)

x1) = 0

for all i > l. But x1 ∈ a and Hi
a(M) is an a-torsion R–module, and so Hi

a(M) = 0 for all i > l.

This complete the inductive step, and the proof.

The following is an example to illustrate Theorem 2.9.

Example 2.10. Let R = K[[X1, X2, X3, X4, X5]] denote the formal power series ring in

five variables over a field K. Put M = K[[X1,X2,X3,X4,X5]]
⟨X2⟩

∩
⟨X3⟩ and a = ⟨X1, X2, X3⟩. In this

case we have dim(M) − d(a,M) = 2, and x1, x2 + x3 is an a-filter regular sequence of

M which has the property mentioned in Theorem 2.9. It follows that cd(a,M) = 2 and

H3
⟨X1,X2,X3⟩(

K[[X1,X2,X3,X4,X5]]
⟨X2⟩

∩
⟨X3⟩ ) = 0.
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Before proving Theorem 2.12, we need the following lemma which is proved in [2].

Lemma 2.11. (see [2, Lemma 4.3]) Let M be a finitely generated R-module, and let q ∈
V(AnnR(H

dimM
m (M))) such that dimMq = dimM − dim R

q . Then AnnR(0 :HdimM
m (M) q) = q.

Theorem 2.12. Let R be a catenary ring, and let a be an ideal of R such that dim R
a = 1.

Then the following statements are equivalent:

(i) cd(a,M) = dim(M)− d(a,M) for each finitely generated R-module M ;

(ii) cd(a, Rp ) = dim(Rp )− d(a, Rp ) for each prime ideal p of R;

(iii) AnnR(0 :
H

dim R
p

a (R
p
)
q) = q for each prime ideal p of R and each prime ideal q ∈

V(AnnR(H
dim R

p
a (Rp )) with dim R

q = 1.

Proof. (i)⇒(ii) is clear.

(ii)⇒(iii) For p ∈ Spec(R), let q be a prime ideal of R such that q ⊇ AnnR(H
dim R

p
a (Rp )) and

dim R
q = 1. Since H

dim R
p

a (Rp ) ̸= 0, it follows from statement (ii) that
√
p+ a = m and so

H
dim R

p
a (Rp )

∼= H
dim R

p
m (Rp ). Therefore the proof is complete if we show that

AnnR(0 :
H

dim R
p

m (R
p
)
q) = q.

Since R is catenary, we have

dim(
R

p
)q = dim

R

p
− 1 = dim(

R

p
)− dim

R

q
.

The result now follows from Lemma 2.11.

(iii)⇒(i) It is enough, in order to prove this part, to show that, if cd(a,M) = dim(M),

then there exists p ∈ AsshR(M) such that
√
p+ a = m. By [9, Corollary 2.2], there exists

p ∈ AsshR(M) such that cd(a, Rp ) = dim(Rp ). We show that for this p, we have
√
p+ a = m.

Suppose, on the contrary, that
√
p+ a ̸= m. Then there exists a prime ideal q of R such

that q ⊇
√
p+ a and dim R

q = 1. Since q ⊇ p = AnnR(H
dim R

p
a (Rp )), by assumption (iii), we

have AnnR(0 :
H

dim R
p

a (R
p
)
q) = q. It follows that (0 :

H
dim R

p
a (R

p
)
a) is not finitely generated. But

by [3, Theorem 3], Artinian local cohomology module H
dim R

p
a (Rp ) is a-cofinite, and this is a

contradiction.
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