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ABSTRACT. Let (R,m) be a Noetherian local ring, M a finitely generated R-module, and a

an ideal of R. We define the a-minimum dimension d(a, M) of M by
d(a, M) = Min{dim Tfa . p € Asshr(M)}.

In this paper, we show that cd(a, M) > dim M —d(a, M) and we give some sufficient conditions

and characterization for the equality to hold true.

1. INTRODUCTION

Throughout this paper, let (R, m) be a commutative Noetherian local ring (with identity)
and let M be a finitely generated R-module. For an R-module M, the i-th local cohomology
module of M with respect to a is defined as

. . R
Hi (M) = lim Exthy(—, M).
n> a’
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For the basic properties of local cohomology the reader can refer to [I] of Brodmann and
Sharp.

Recall that the cohomological dimension of M with respect to a is defined as
cd(a, M) := max{i € Z : H,(M) # 0}.

The cohomological dimension has been studied by several authors; see, for example, Faltings
[6], Hartshorne [6], Huneke-Lyubeznik [7] and Varbaro [I0] . In particular in [6] and [7], several
upper bounds for cohomological dimension were obtained. It follows from [I, Theorem 6.2.7]
that cd(a, M) is greater than or equal to the grade(a, M). A natural question to ask is under
what conditions one can obtain a better lower bound for cd(a, M). The main aim of this article
is to establish a new lower bound for cohomological dimension of finitely generated modules
over a local ring.

Throughout this article, we denote {p € Spec R : p 2 a} by V(a), Min V(a) by Min(a), and
{p € Assp(M) : dim% = dim M} by Asshr(M). The radical of a, denoted by +/a, is defined
to be the set {x € R : 2™ € a for some n € N}. Recall that an R-module M is called a-cofinite
if Supp(M) C V(a) and Ext(£, M) is finitely generated for all i > 0. For any unexplained

notation and terminology, we refer the reader to [l and [g].

2. Main results

Definition 2.1. Let M be a finitely generated R-module, and let a be an ideal of R. We
define the a-minimum dimension d(a, M) of M by

R
d(a, M) = Min{dim —— : p € Asshr(M)}.
(0.04) = Min{dim " :p € Assha(M)}
To prove the main results of this paper, we need the following lemmas.

Lemma 2.2. (see [d, Lemma 2.5]) Let M be a finitely generated R-module, and let a be an
ideal of R. Then

cd(a+ Rz, M) < cd(a, M) +1

for any element x € m.

Lemma 2.3. Let M be a finitely generated R-module and a be an ideal of R with d(a, M) > 0.

Then there exists an element x € m such that dim ]\]\/[4 = dim M —1 and d(a, %) < d(a, M)-1.

T

Proof. Since d(a, M) > 0, we have y/p + a # m for all p € Asshr(M), and so there exists

rem— U q.

gE€Min(p-+a),pEAsshp (M)
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By the definition, there exists p € Asshr(M) such that d(a, M) = dim m. Now let
M

q € ASShR(W

), then by the choice of z we have

R M M
dim — =dim ———— =dimM — 1 = dim —.
im p im (b Ro)M im im —

As Assh R(W) C Supp %, we have q € Supp %, and so by the above equalities we
have q € Assh R(%)- It follows that

M M
pratRoM U (praM (a, M)

M

dim
(

M
—— <
(q+a)M

This element x has the requested properties.

Theorem 2.4. Let M be a finitely generated R-module, and let a be an ideal of R. Then
cd(a, M) > dim M — d(a, M).

Proof. We prove this by induction on n = d(a, M). If d(a, M) = 0 then we have dim ﬁ =0
for some p € Asshr(M) and so /p+a = m for some p € Asshr(M). It follows from [,
Exercise 6.1.9 | and Non-vanishing Theorem [, 6.1.4] that

M M dim M M

dim M Y~ prdim M ~ prdim M ~ pM
HY (M) = B ) = O ) = H Y

a p]\4 a+p p]\4 )#07

and so HImM (pr) =£ 0.

Now suppose, inductively, that d(a, M) > 0, and the result has been proved for all finitely
generated R-modules N with d(a, N) < d(a, M). By Lemma 3, there exists an element x € m
such that dim M = dim ;EMM + 1 and d(a, M) > d(a, mﬂM) + 1. So by induction hypothesis we
have cd(a, M/zM) > dim 2L — d(a, 2L). Tt follows that

dim M —d(a,M) =dim 2 +1—d(a, M)
<dim 2L —d(a, &)
[by induction hypothesis] < cd(a, 2
[@, Theorem 2.2] < cd(a, M).

This completes the proof.

The following examples shows that the equality does not hold in general.

Example 2.5. Let M be a finitely generated R-module such that N p ¢ q for some q
pGASShR(M)

in Assp(M). Then for z € N\  p—q we have
peAsshp (M)

cd(Rx,M)=1>0=dim(M) — d(Rz, M).
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For example, let R = K[[X,Y, Z]], M = %, and x = X, where K is a field and X,Y, Z

are independent indeterminates.
Example 2.6. Let K be a field of characteristic 0. Let R’ := K[X1, X9, X3], m' =
(X1,X2,X3) and b = (X2 — X? — X}). Set R := (%)%/ and let p be the extension of
the ideal

(X1 + Xz — XoX3, (X5 — 1)*(X1 +1) — 1)

of R' to R. Then R is a 2-dimensional local domain, and p is a prime ideal of R with dim % =1

(see [, Exercise 8.2.9]), and we have
cd(p,R) =2 >1=dim(R) — d(p, R).

Therefore, it is natural to ask, under what conditions does the equality hold?
Our second aim is to find such conditions. The following theorem gives us a characterization

for the equality cd(a, M) = dim M — d(a, M).

Theorem 2.7. Let M be a finitely generated R-module, and let a be an ideal of R. Then the
following statements are equivalent:

(i) cd(a, M) = dim M — d(a, M);

(ii) There ezists a sequence x1,xa, ...,x;, where |l = d(a, M), such that for each i =1,2,...,1

T, em— U q

geMin(p+a+Rx1+4+Rz;_1)
pEAsshp (M)

and H}%z (Hﬁiilgxlﬁm-s—Rwi_l(M)) # 0, where ¢ = cd(a, M).

Proof. (i)=-(ii) We use induction on | = d(a, M). When | = 0, there is nothing to prove.
So suppose that d(a, M) = [ > 0 and that the result has been proved for each ideal b with
d(b, M) < l. Choose 1 € m — U gq; then we have

g€Min(p+a)
pEAsshp (M)

dimM —d(a,M) =dimM —d(a+ Rzx;,M)—1
<cd(a+ Rxy, M) —1
[by lemma P2] < cd(a, M).
So cd(a+ Rz, M) = dim M — d(a+ Rx1, M) and d(a + Rx1, M) = [ — 1. Therefore, by the
inductive hypothesis, there exists a sequence s, z3, ..., x; € m such that, for each i = 2,3, ..., [,

Tr; €em— U q

geMin(p+a+Rz1++Rx;—1)
peAsshp(M)
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and H};@ (HﬁfRJ}1+ A Ra;_, (M) #0.

On the other hand, we have cd(a + Rx1, M) = cd(a, M) + 1 and so Hgﬁﬁ( ) # 0. By [,

Proposition 8.1.2 (i)], there is an exact sequence

HS(M) — Hg(M,,) — HT, (M) — 0.

It follows that the natural homomorphism H{(M) — HS(M,,) is not surjective. So
Hp, (HS(M)) # 0 by [0, Remark 2.2.17]. This completes the proof of (i)=>(ii).

(ii)=(i) For d(a, M) = 0 the result is obvious. Now suppose, inductively, that d(a, M) =
[ > 0 and the result has been proved for each ideal b with d(b, M) < [. Assume that there
exists a sequence x1,Ta,...,x; € m such that, for each i = 1,2, ..., 1,

Tr; €em— U q

geMin(p+a+Rz1++Rx;—1)
pEAsshp (M)

and Hp,, (Hgfmll Ry (M) #0.

Note that d(a + Rx1, M) = d(a, M) — 1 = [ — 1, and so, by the inductive hypothesis, we
have cd(a + Rz, M) = dim(M) — d(a + Rxy, M). It follows that cd(a + Rz1, M) — 1 =
dim(M) — d(a, M). Since Hp, (H5(M)) # 0, the natural homomorphism HS(M) —s HS(M,,)

| and so H‘éi}%l( ) # 0 by [, Proposition 8.1.2 (i)].
Hence cd(a+ Rx1, M) = cd(a, M) + 1 and the result follows.

is not surjective by [0, Remark 2.2.17

Recall that a sequence x1,x2,...,x; € a is called an a-filter regular sequence of M if x; ¢ p
for all p € ASSR(+) —V(a) and all ¢ = 1,2,...,{. For an R-module M, we shall

x1,x2,...,2i—1)M

denote % by M.

Lemma 2.8. Let M be a finitely generated R-module, and let a be an ideal of R such that
Lo(M) # M. If M is an equidimensional R-module, then
(i) M is an equidimensional R-module and we have dim M = dim M, and d(a, M) =
d(a, M).
(i1) If R is a catenary ring then M s an, equidimensional R-module for each a-filter reqular

xM
element x of M.

Proof. (i) This is immediate from the fact that
Min Assg(M) = Min Assg(M) — V(a) = Asshr(M) — V(a) = Asshp(M).

(ii) Let q € Min ASSR(%). So we have ¢ € Min(Anng(M) + Rx). It follows that there

exists p € Min(Anng(M)) = Asshg(M) such that q € Min(p + Rx). As R is a catenary ring,
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we have h(q) = h(p) + 1 and so dim(R/q) = dim(R/p) — 1.
It follows that

dim(R/q) = dim(R/p) — 1 = dim(M) — 1 = dim(;\]/@).

S

Hence q € Asshr(-%) and so the claim follows.

=l

T

Theorem 2.9. Let R be a catenary ring, M a finitely generated equidimensional R-module,
and | = dim(M) — d(a, M). If there exists an a-filter reqular sequence x1, 2, ...,x; of M such

that d(a, M;—1) = d(a, M;), where My = M and M; = xl‘i;[* - foralli=1,2,...,1, then

cd(a, M) = dim(M) — d(a, M).

Proof. By Theorem P4, it is enough for us to show that cd(a, M) < [. We argue by induction
onl. When [ = 0, since M is equidimensional, by the definition of d(a, M) we have M = T'q(M)
and so cd(a, M) = dim(M) — d(a, M).

Now suppose, inductively, that { > 0 and the result has been proved for smaller values
of . By the pervious lemma, in this case, M is an equidimensional R-module, and we have
dim(M) = dim(M), d(a, M) = d(a, M), and cd(a, M) = cd(a, M). So in view of the inductive

hypothesis we can replace M by M, and assume that M is a-torsion free. The exact sequence
0— M2 M— M —0
induces an exact sequence
Him! (M) — Hi(M) 2% Hi(M).
Since d(a, M) = d(a, M) and dim(M;) = dim(M) — 1, we obtain
dim(M;) —d(a, My) =1-1.

By the pervious lemma, M; is an equidimensional R-module, so by induction hypothesis

Hi(M;) = 0 for all i > 1 — 1. Therefore, in view of the above exact sequence, (0 : 1) =0
HG (M)

for all i > [. But 21 € a and H’(M) is an a-torsion R-module, and so H:(M) = 0 for all i > [.
This complete the inductive step, and the proof.

The following is an example to illustrate Theorem 9.

Example 2.10. Let R = KJ[[X1, X9, X3, X4, X5]] denote the formal power series ring in

five variables over a field K. Put M = K[[X&)S’é?)é;"xs]] and a = (X7, X9, X3). In this

case we have dim(M) — d(a,M) = 2, and 1,22 + x3 is an a-filter regular sequence of

M which has the property mentioned in Theorem P9. It follows that cd(a, M) = 2 and

K([[X1,X2,X3,X4,X5]]\ _
H?Xl,Xg,Xg,)( L 2}(2?0?)(3; 5]}) = 0.
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Before proving Theorem EZT2, we need the following lemma which is proved in [2].

Lemma 2.11. (see [2, Lemma 4.3]) Let M be a finitely generated R-module, and let q €
V(Anng(HI™M (A1) such that dim My = dim M — dim%. Then Anng(0 Hdim M (1) q) =q.

Theorem 2.12. Let R be a catenary ring, and let a be an ideal of R such that dim% =1.

Then the following statements are equivalent:
(i) cd(a, M) = dim(M) — d(a, M) for each finitely generated R-module M ;

(ii) cd(a, %) = dim(%) —d(a, %) for each prime ideal p of R;
(iii) Anng(0 : aim B q) = q for each prime ideal p of R and each prime ideal q €
Hq

—
oG
—

: R
dim & R

V(Anng(H, 7 (%)) with dim% =1

=|

Proof. (i)=(ii) is clear.

dim £
(ii)=-(iii) For p € Spec(R), let q be a prime ideal of R such that ¢ O Anng(H, °* (%)) and
dim &
dim% = 1. Since H, * (%) # 0, it follows from statement (ii) that /p +a = m and so

dim £

dim &
Hy ° (%) ~H, ° (%). Therefore the proof is complete if we show that

Anng(0: iim% %) q) =4d.

Since R is catenary, we have
dim(E)q = dimE —-1= dim(ﬁ) - dimE.
p p p q
The result now follows from Lemma PTT.

(iii)=-(i) It is enough, in order to prove this part, to show that, if cd(a, M) = dim(M),
then there exists p € Asshg(M) such that \/p +a = m. By [4, Corollary 2.2], there exists
p € Asshr(M) such that cd(a, %) = dim(%). We show that for this p, we have \/p +a = m.
Suppose, on the contrary, that \/p+a # m. Then there exists a prime ideal q of R such
that ¢ O /p +a and dim% = 1. Since q D p = AnnR(Hiim%(ﬂ)), by assumption (iii), we

p
have Anng(0: 4. &  q) = q. It follows that (0 : r ) is not finitely generated. But
H

E P

dim

a a

&
by [3, Theorem 3|, Artinian local cohomology module Ha1 e (%) is a-cofinite, and this is a

contradiction.
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