

Journal of Algebraic Structures and Their Applications

ISSN: 2382-9761

www.as.yazd.ac.ir

Algebraic Structures and Their Applications Vol. 7 No. 1 (2019) pp 11-20.

Research Paper

COFINITELY WEAK GENERALIZED δ -SUPPLEMENTED MODULES

BEHNAM TALAEE*

ABSTRACT. We will study modules whose cofinite submodules have weak generalized- δ -supplements. We attempt to investigate some properties of cofinitely weak generalized δ -supplemented modules. We will prove for a module M and a semi- δ -hollow submodule N of M that, M is cofinitely weak generalized δ -supplemented if and only if $\frac{M}{N}$ is cofinitely weak generalized δ -supplemented. Also we show that any M-generated module is cofinitely weak generalized δ -supplemented module, where M is cofinitely weak generalized δ -supplemented. We obtain some other results about this kind of modules.

1. Introduction

Throughout the paper R will be an associative ring with identity and we will consider only left unital R-modules. All definition not given here can be found in [1, 3, 5, 10].

DOI: 10.29252/as.2020.1620

 $\operatorname{MSC}(2010)\colon\operatorname{Primary}:16\mathrm{D}60$ Secondary: 16D80, 16D90

Keywords: Cofinite submodules, Cofinitely weak δ -supplemented modules, Cofinitely generalized δ -supplemented

modules, Cofinitely weak generalized δ -supplemented modules, Semi- δ -hollow modules.

Received: 14 May 2019, Accepted: 15 October 2019.

*Corresponding author

© 2020 Yazd University.

A submodule K of M is called *small* in M (denoted by $K \ll M$) if, $L + K \neq M$ for every proper submodule L of M. The sum of all small submodules of the module M is denoted by Rad(M).

A submodule N of M is called *cofinite* if $\frac{M}{N}$ is finitely generated.

For two submodules N and K of the module M, N is called a *supplement* of K in M if N is minimal with respect to the property M = K + N, equivalently M = K + N and $N \cap K \ll N$. N is called a *weak supplement* of K in M if N + K = M and $N \cap K \ll M$.

The module M is called *supplemented* if every submodule of M has a supplement in M. M is called *weakly supplemented* if every submodule of M has a weak supplement in M.

2. A background of δ -supplemented modules

In this section we introduce the δ -small submodule of a module and then some preliminary lemmas and propositions about the class of δ -supplemented modules are given. We develop to get some suitable results about the class cofinitely weak generalized δ -supplemented modules in the section 3.

The singular submodule of a module M (denoted by Z(M)) is $Z(M) = \{x \in M \mid Ix = 0 \}$ for some ideal $I \subseteq R$. A module M is called singular (nonsingular) if Z(M) = M (resply. Z(M) = 0).

 δ -small submodules were defined as a generalization of small submodules by Zhou in [11]. Let M be a module and $L \leq M$. Then L is called δ -small in M (denoted by $L \ll_{\delta} M$) if, for any submodule N of M with M/N singular, M = N + L implies that M = N. The sum of all δ -small submodules of M is denoted by $\delta(M)$.

It is easy to see that every small submodule of a module M is δ -small in M, so $Rad(M) \subseteq \delta(M)$ and, if M is singular, all δ -small submodules of M are small and so $Rad(M) = \delta(M)$ in this case. Also any non-singular semisimple submodule of M is δ -small in M.

Example 2.1. Let R be a semisimple ring and $M = R_R$. Since R is the only essential ideal of R, so there is no nonzero singular factor module of M. Finally we conclude that all submodules of M (even M) are δ -small in M.

In the other hand since M is semisimple, 0 is the only small submodule of M. In this case Rad(M) = 0 and $\delta(M) = M$.

Especially let $R = M = \mathbb{Z}_6$. Then two non-trivial submodule of M, $M_1 = \{\bar{0}, \bar{3}\}$ and $M_2 = \{\bar{0}, \bar{2}, \bar{4}\}$ are δ -small in M, but neither M_1 nor M_2 is small in M. Moreover $M \ll_{\delta} M$. Finally we have Rad(M) = 0 but $\delta(M) = M$.

The above example also shows that the inclusion $Rad(M) \subseteq \delta(M)$ can be strict.

Let M be any module and $B \leq A$ be submodules of M. Then B is called a δ -cosmall submodule of A in M if $A/B \ll_{\delta} M/B$. A submodule N of M is called δ -coclosed in M if N has no proper δ -cosmall submodule in M, that is, if $B \leq N$ such that $N/B \ll_{\delta} M/B$, then N = B. A submodule A of M is weak δ -coclosed in M if, given $B \leq A$ such that A/B is singular and $A/B \ll_{\delta} M/B$, then A = B. For a submodule N of M, $A \leq N$ is called a δ -coclosure of N in M if A is δ -coclosed in M and $N/A \ll_{\delta} M/A$ and A is called a weak δ -coclosure of N in M if A is weak δ -coclosed in M and $N/A \ll_{\delta} M/A$. (for more information see [6]).

Let K, N be submodules of module M. Then N is called a δ -supplement of K in M if M = N + K and $N \cap K \ll_{\delta} N$. N is called a weak δ -supplement of K in M if M = N + K and $N \cap K \ll_{\delta} M$. The module M is called δ -supplemented if every submodule of M has a δ -supplement in M. M is called weak δ -supplemented if every submodule of M has a weak δ -supplement in M.

Here we present two lemmas that state some properties of δ -small submodules which we will use throughout the section 3.

Lemma 2.2. Let M and N be modules. Then

- (1) $\delta(M) = \sum \{L \leq M \mid L \ll_{\delta} M\} = \bigcap \{K \leq M \mid M/K \text{ is singular simple } \}.$
- (2) If $f: M \to N$ is an R-homomorphism, then $f(\delta(M)) \subseteq \delta(N)$. Therefore $\delta(M)$ is a fully invariant submodule of M. In particular, if $K \leq M$, then $\delta(K) \subseteq \delta(M)$.
- (3) If $M = \bigoplus_{i \in I} M_i$, then $\delta(M) = \bigoplus_{i \in I} \delta(M_i)$.
- (4) If every proper submodule of M is contained in a maximal submodule of M, then $\delta(M)$ is the unique largest δ -small submodule of M. In particular if M is finitely generated, then $\delta(M)$ is δ -small in M.

Proof. See [11, Lemma 1.2]. \Box

Lemma 2.3. Let M be a module and $\delta(M) \leq K \leq M$. Then the following hold:

- (1) If $\delta(M)$ is δ -small in M and $\delta(M)$ is a δ -cosmall submodule of K in M, then K is δ -small in M.
- (2) $\delta(M/\delta(M)) = 0$.

Proof. See [11, Lemma 1.3]. \square

3. Cofinitely weak generalized δ -supplemented modules

The submodules Rad(M) and $\delta(M)$ of a module M in the category of modules play important roles. Many authors studied some generalizations of supplemented, weakly supplemented, δ -supplemented and weakly δ -supplemented modules by us of these two functors. We refer to [2, 7, 8] for some of them.

Here we study and investigate a generalization of weakly δ -supplemented modules.

Definition 3.1. Let M be a module and N, K two submodules of M. N is called a generalized δ -supplement of K in M if, N+K=M and $N\cap K\subseteq \delta(N)$. N is called a weak generalized δ -supplement of K in M if, N+K=M and $N\cap K\subseteq \delta(M)$.

The module M is called (cofinitely) generalized δ -supplemented (briefly (C)G- δ -S) if every (cofinite) submodules of M has a generalized δ -supplement in M. M is called (cofinitely) weak generalized δ -supplemented (briefly (C)WG- δ -S) if every (cofinite) submodule of M has a weak generalized δ -supplement in M.

G- δ -S modules are defined and investigated by Talebi and current author in [7]. Here a generalization of G- δ -S modules namely CWG δ -S modules and some other kind of modules related to these modules will be defined and investigated. First we present an elementary lemma.

Lemma 3.2. Let M be a module and V, U submodules of M. If V is a weak generalized δ -supplement of U in M, then $\frac{V+L}{L}$ is a weak generalized δ -supplement of $\frac{U}{L}$ in $\frac{M}{L}$ for every $L \leq U$.

Proof. We have V+U=M and $V\cap U\leq \delta(M)$. So $\frac{M}{L}=\frac{V+L}{L}+\frac{U}{L}$. Let $\pi:M\longrightarrow \frac{M}{L}$ be the natural epimorphism. Then by Lemma 2.1 (2), $\pi(V\cap U)\subseteq \pi(\delta(M))\subseteq \delta(\frac{M}{L})$, where $\pi(V\cap U)=\frac{V\cap U+L}{L}=\frac{V+L}{L}\cap \frac{U}{L}$ by modularity. Hence $\frac{V+L}{L}$ is a weak generalized δ -supplement of $\frac{U}{L}$ in $\frac{M}{L}$. \square

Proposition 3.3. Every homomorphic image of a CWG- δ -S module is again CWG- δ -S.

Proof. Let M be a CWG- δ -S module and $\frac{U}{N}$ a cofinite submodule of $\frac{M}{N}$ where $N \leq U \leq M$. Then U is a cofinite submodule of M and so there exists a submodule V of M such that V + U = M and $V \cap U \leq \delta(M)$. By Lemma 3.2, $\frac{V+N}{N}$ is a weak generalized δ -supplement of $\frac{U}{N}$ in $\frac{M}{N}$ and this completes the proof. \square

Recall that a module M is called semi-hollow if every proper finitely generated submodule of M is small in M ([3, 2.12]). Here we call a module M, $semi-\delta-hollow$ if every proper

finitely generated submodule of M is δ -small in M. It is clear that if M is semi- δ -hollow, then $\delta(M) = M$. $\frac{\mathbb{Z}}{n^n \mathbb{Z}}$ as \mathbb{Z} -modules, are semi- δ -hollow.

Proposition 3.4. Let M be a module and N a semi- δ -hollow submodule of M. Then M is $CWG-\delta-S$ iff $\frac{M}{N}$ is.

Proof. The necessity follows from Proposition 3.3.

For converse suppose that N is a semi- δ -hollow submodule of M and $\frac{M}{N}$ is a CWG- δ -S module. If U is a cofinite submodule of M, then $\frac{U+N}{N}$ is a cofinite submodule of $\frac{M}{N}$. Let $\frac{V}{N}$ be a weak generalized δ -supplement of $\frac{U+N}{N}$ in $\frac{M}{N}$. So

$$\frac{U+N}{N} + \frac{V}{N} = \frac{M}{N} \ and \ \frac{U+N}{N} \cap \frac{V}{N} \subseteq \delta(\frac{M}{N})$$

This implies U+V=M and $\frac{U\cap V+N}{N}\subseteq \delta(\frac{M}{N})$. Since N is semi- δ -hollow, we have $N=\delta(N)\subseteq \delta(M)$ and so $\frac{\delta(M)}{N})=\delta(\frac{M}{N})$. Finally we get $U\cap V\subseteq \delta(M)$, as desired. \square

Proposition 3.5. Let M be a WG- δ -S module and N be a submodule of M such that $\delta(\frac{M}{N}) = 0$. Then $\frac{M}{N}$ is semisimple.

Proof. Suppose that $N \leq K \leq M$. There exists a submodule V of M such that K + V = M and $K \cap V \leq \delta(M)$. According to Lemma 3.2, $\frac{V+N}{N}$ is a weak generalized δ -supplement of $\frac{K}{N}$ in $\frac{M}{N}$, so that

$$\frac{K}{N} + \frac{V+N}{N} = \frac{M}{N}$$
 and $\frac{V+N}{N} \cap \frac{K}{N} \subseteq \delta(\frac{M}{N}) = 0$

That is $\frac{M}{N}$ is semisimple. \square

Corollary 3.6. Let M be a CWG- δ -S module and $N \leq M$ such that $\delta(\frac{M}{N}) = 0$. Then every cofinite submodule of $\frac{M}{N}$ is a direct summand.

Proof. If $\frac{K}{N}$ is a cofinite submodule of $\frac{M}{N}$, then K is a cofinite submodule of M. Now apply the proof of Proposition 3.5 to complete the proof. \square

By Proposition 3.3 and Proposition 3.4 we have the next two corollaries.

Corollary 3.7. If M is a WG- δ -S module, then $\frac{M}{\delta(M)}$ is semisimple.

Corollary 3.8. Let M be a CWG- δ -S module. Then every cofinite submodule of $\frac{M}{\delta(M)}$ is a direct summand.

Proposition 3.9. Let $f: M \longrightarrow N$ be a homomorphism and L a weak generalized δ -supplement submodule of M containing $\ker(f)$. Then f(L) is a weak generalized δ -supplement of f(M).

Proof. Suppose that L is a weak generalized δ -supplement of K in M. Hence M = L + K and $L \cap K \subseteq \delta(M)$. Then f(M) = f(L) + f(K) and $f(L \cap K) \subseteq f(\delta(M)) \subseteq \delta(f(M))$ by Lemma 2.1. As $\ker(f) \subseteq L$, we have $f(L \cap K) = f(L) \cap f(K)$ and so f(L) is a weak generalized δ -supplement of f(K) in f(M). \square

Lemma 3.10. Let M be a module, U a cofinite submodule of M and $N \leq M$ a weak generalized δ -supplemented module. If N + U has a weak generalized δ -supplement in M, then U also has.

Proof. Let X be a weak generalized δ -supplement of N+U in M. We have $\frac{N}{N\cap(X+U)}\cong \frac{N+X+U}{X+U}=\frac{M}{X+U}\cong \frac{M/U}{(X+U)/U}$ is finitely generated. So $N\cap(X+U)$ has a weak generalized δ -supplement Y in N; i.e. $Y+[N\cap(X+U)]=N$ and $y\cap N\cap(X+U)=Y\cap(X+U)\subseteq \delta(N)\subseteq\delta(M)$. Now we have

$$M = U + X + N = U + X + Y + [N \cap (X + U)] = U + X + Y$$

and also

$$U \cap (X+Y) \subseteq X \cap (Y+U) + Y \cap (X+U) \subseteq X \cap (N+U) + Y \cap (X+U) \subseteq \delta(M)$$

That is X + Y is a weak generalized δ -supplement of U in M. \square

Proposition 3.11. Any sum of CWG- δ -S modules is again CWG- δ -S.

Proof. Let $\{M_i\}_{i\in I}$ be set of CWG- δ -S modules and $M=\sum_{i\in I}M_i$. Suppose that N is a copfinite submodule of M and $\frac{M}{N}$ is generated by $\{x_1+N,x_2+N,...,x_k+N\}$. Thus $M=Rx_1+Rx_2+...+Rx_k+N$. For every $i\in\{1,2,...,k\}$ We have $x_i\in\sum_{j\in F}M_j$ for some finite set $F_i\subseteq I$. Therefore $Rx_1+Rx_2+...+Rx_k\leq\sum_{j\in F}M_j$ where $F=\bigcup_{i=1}^kF_i$. Suppose that $F=\{i_1,i_2,...,i_r\}$. Then $M=N+\sum_{s=1}^rM_{i_s}$. Since $M=M_{i_r}+(N+\sum_{s=1}^{r-1}M_{i_s})$ has a trivial weak generalized δ -supplement 0 and M_{i_r} is a CWG- δ -S module, $N+\sum_{s=1}^{r-1}M_{i_s}$ has a weak generalized δ -supplement in M by Lemma 3.10. Similarly $N+\sum_{s=1}^{r-2}M_{i_s}$ has a weak generalized δ -supplement in M and so on. After we have used Lemma 3.10 r times, we will obtain that N has a weak generalized δ -supplement in M, as required. \square

Corollary 3.12. If M is a CWG- δ -S module, then every M-generated module is again CWG- δ -S.

Proof. Follows immediately from Proposition 3.3 and Proposition 3.11. \Box

Lemma 3.13. Let M be a module and X a cofinite (maximal) submodule of M. If Y is a weak generalized δ -supplement of X in M, then X has a finitely generated (cyclic) weak generalized δ -supplement in M contained in Y.

Proof. We have $\frac{Y}{X \cap Y} \cong \frac{X+Y}{X} = \frac{M}{X}$ is finitely generated. Suppose that $\frac{Y}{X \cap Y} = \langle x_1 + X \cap Y, x_2 + X \cap Y, ..., x_n + X \cap Y \rangle$. If $Z = \langle x_1, x_2, ..., x_n \rangle$, then $Z \leq Y$ and $Z + X \cap Y = Y$. Now

$$Z + X = Z + X \cap Y + X = Y + X = M$$

and also $Z \cap X \leq Y \cap X \leq \delta(M)$. Therefore Z is a finitely generated weak generalized δ -supplement of X contained in Y.

Now if X is maximal, then $\frac{Y}{X \cap Y}$ is simple and especially cyclic and by the similar way there is a cyclic submodule W of Y which is a weak generalized δ -supplement of X in M.

Recall that ([1, Proposition 10.4]) if M is a finitely generated module, then $Rad(M) \ll M$. Similarly we have the following lemma.

Lemma 3.14. If M is a finitely generated module, then $\delta(M) \ll_{\delta} M$.

In the next proposition we proceed with a weak condition to derive a strong property for such submodules. Then from this proposition we present some corollaries.

Proposition 3.15. Let M be a module and X a cofinite submodule of M. Moreover suppose that Y is a weak generalized δ -supplement of X in M and every finitely generated submodule K of Y satisfies in condition that $\delta(K) = K \cap \delta(M)$. Then X has a finitely generated δ -supplement in M.

Proof. We have X+Y=M and $X\cap Y\subseteq \delta(M)$. Since $\frac{M}{X}$ is finitely generated, by Lemma 3.13 X has a finitely generated weak generalized δ -supplement K in M contained in Y. So M=X+K and $X\cap K\subseteq \delta(M)$. Now $X\cap K\subseteq K\cap \delta(M)=\delta(K)$. By Lemma 3.14, $\delta(K)\ll_{\delta}K$ and hence K is a δ -supplement of X in M. \square

The next corollary follows immediately from Proposition 3.15.

Corollary 3.16. Let M be a module and X a cofinite submodule of M. Moreover suppose that Y is a weak generalized δ -supplement of X in M and every finitely generated submodule K of Y is a direct summand of M. Then X has a finitely generated generalized δ -supplement in M.

Theorem 3.17. Let M be a module such that every finitely generated submodule K of M satisfies in condition $K \cap \delta(M) = \delta(K)$. Then the following statements are equivalent:

- (1) M is cofinitely δ -supplemented;
- (2) M is $CG-\delta-S$;
- (3) M is cofinitely weak δ -supplemented;
- (4) M is CWG- δ -S.

Proof. $1 \Longrightarrow 2 \Longrightarrow 4$ and $1 \Longrightarrow 3 \Longrightarrow 4$ are clear.

So it is enough to prove $4 \Longrightarrow 1$. Suppose that X is a cofinite submodule of M. Since M is CWG- δ -S, X has a weak generalized δ -supplement in M. Now by Proposition 3.15, X has a δ -supplement in M and this completes the proof. \square

Corollary 3.18. Suppose that M is a module such that every finitely generated submodule of M is a direct summand. Then the following statements are equivalent

- (1) M is cofinitely δ -supplemented;
- (2) M is $CG-\delta-S$;
- (3) M is cofinitely weak δ -supplemented;
- (4) M is CWG- δ -S.

Proof. If K is a direct summand of M, then $K \cap \delta(M) = \delta(K)$. Now apply Theorem 3.17. \square

Corollary 3.19. Suppose that M is a finitely generated module such that for every finitely generated submodule K of M we have $K \cap \delta(M) = \delta(K)$. Then the following statements are equivalent

- (1) M is δ -supplemented;
- (2) M is generalized δ -supplemented;
- (3) M is weak δ -supplemented;
- (4) M is weak generalized δ -supplemented.

Furthermore in this case every finitely generated submodule of M is a δ -supplement.

Proof. The first part follows from Theorem 3.17. To see the second part, suppose that K is a finitely generated submodule of M. Then K has a weak δ -supplement L in M. Therefore L + K = M and $L \cap K \subseteq K \cap \delta(M) = \delta(K) \ll_{\delta} K$; i.e. K is a δ -supplement of L in M. \square

Example 3.20. Consider the \mathbb{Z} -module $M = \mathbb{Z}$. Then for every submodule $N = m\mathbb{Z}$ of M we have $0 = \delta(N) = N \cap \delta(M)$. Also M is not δ -supplemented, so M is not generalized δ -supplemented and especially M is not weak generalized δ -supplemented by Corollary 3.19.

Theorem 3.21. For a module M the following are equivalent

- (1) M is a CWG- δ -S module;
- (2) $\frac{M}{\delta(M)}$ is a CWG- δ -S module;
- (3) Every cofinite submodule of M is a direct summand.

Proof. $1 \Longrightarrow 2$ follows from Proposition 3.3.

 $2 \Longrightarrow 3$ is clear since $\delta(\frac{M}{\delta(M)}) = 0$.

To see $3 \Longrightarrow 1$ suppose that K is a cofinite submodule of M. Then $\frac{K+\delta(M)}{\delta(M)}$ is a cofinite submodule of $\frac{M}{\delta(M)}$. Hence there exists a submodule $\frac{L}{\delta(M)}$ of $\frac{M}{\delta(M)}$ such that

$$\frac{K+\delta(M)}{\delta(M)} + \frac{L}{\delta(M)} = \frac{M}{\delta(M)} \ and \ \frac{K+\delta(M)}{\delta(M)} \cap \frac{L}{\delta(M)} = 0$$

Therefore K + L = M and $K \cap L \subseteq \delta(M)$ as desired. \square

Corollary 3.22. Let M be a CWG- δ -S module. Then

- (1) Every maximal submodule of $\frac{M}{\delta(M)}$ is a direct summand.
- (2) Every maximal submodule of $\frac{M}{\delta(M)}$ is a weak generalized δ -supplement.
- (3) Every maximal submodule of M is weak generalized δ -supplement.

Proof. It is clear that conditions 1, 2 and 3 are equivalent by Theorem 3.21. Now if M is CWG- δ -S, then 3 holds, since every maximal submodule is cofinite. \Box

4. Acknowledgments

The authors acknowledge the funding support of Babol Noshirvani University of Technology through Grant program No. BNUT/370472/98.

References

- F. Anderson and K. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics., Vol. 13, Springer-Verlag, New York, 1992.
- [2] G. Bilhan and T. Güroglu, w-Coatomic Modules, Cankaya. Uni. J. Science. Eng., 7 No.1 (2010) 17-24.
- [3] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules, Supplements and Projectivity in Module Theory. Frontiers in Math., Birkhäuser, Boston, 2006.
- [4] F. Y. Eriylmaz and S. Eren, Totally cofinitely weak Rad-supplemented modules. International J. Pure and applied Math., 80 No. 5 (2012) 683-392.
- [5] S. H. Mohamed, and B. J. Muller, Continuous and Discrete modules, Cambridge Univ. Press., Cambridge, UK, 1990.
- [6] Y. Talebi and B. Talaee, Generalizations of D_{11} and D_{11}^+ modules, A. E. J. Math., 2 No. 2 (2009) 285-293.
- [7] Y. Talebi and B. Talaee, On generalized δ -supplemented modules, V. Journal. Math., **37** No. 4 (2009) 515-525.

- [8] E. Turkmen and A. Pancer, A generalization of Rad-supplemented modules, Int. J. Pure Appl. Math., 68No. 4 (2011) 477-485.
- [9] E. Turkmen and A. Pancer, On Radical Supplemented Modules, Int. J. C. Cognition, 7 No. 1 (2009) 62-64.
- [10] R. Wisbauer, Foundations of Modules and Ring Theory, Gordon and Breakch, philadephia, 1991.
- [11] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Alg. Coll., 7 No. 3 (2000) 305-318.

Behnam Talaee

Department of mathematics, Faculty of Basic science

Babol Noshirvani University of Technology, Shariati Ave., Babol, Iran.

Post Code:47148-71167, Tel/Fax: +981132334203

behnamtalaee@nit.ac.ir