Journal of ALGEBRAIC STRUCTURES and THEIR APPLICATIONS

Journal of Algebraic Structures and Their Applications ISSN: 2382-9761

www.as.yazd.ac.ir

Algebraic Structures and Their Applications Vol. 7 No. 1 (2020) pp 1-10.

ON THE ASSOCIATED PRIMES OF THE GENERALIZED *d*-LOCAL COHOMOLOGY MODULES

Z. RAHIMI-MOLAEI, SH. PAYROVI AND S. BABAEI

ABSTRACT. The first part of the paper is concerned to relationship between the sets of associated primes of the generalized d-local cohomology modules and the ordinary generalized local cohomology modules. Assume that R is a commutative Noetherian local ring, M and N are finitely generated R-modules and d,t are two integers. We prove that Ass $H_d^t(M, N) = \bigcup_{I \in \Phi} Ass H_I^t(M, N)$ whenever $H_d^i(M, N) = 0$ for all i < t and $\Phi = \{I : I \text{ is an ideal of } R \text{ with } \dim R/I \leq d\}$. In the second part of the paper, we give some information about the non-vanishing of the generalized d-local cohomology modules. To be more precise, we prove that $H_d^i(M, R) \neq 0$ if and only if i = n - d whenever R is a Gorenstein ring of dimension n and $pd_R(M) < \infty$. This result leads to an example which shows that Ass $H_d^{n-d}(M, R)$ is not necessarily a finite set.

1. INTRODUCTION

Throughout this paper, R denotes a commutative Noetherian ring with non-zero identity. For an ideal I of R and R-modules M and N, the *i*th generalized local cohomology module of

DOI: 10.29252/as.2020.1615

MSC(2010): Primary 13D45; Secondary 14B15.

Keywords: Gorenstein Ring, Associted prime ideals, d-local cohomology modules.

Received: 27 April 2019, Accepted: 05 Aug 2019.

^{*}Corresponding author

^{© 2020} Yazd University.

M and N with respect to I is defined as

$$H_I^i(M,N) \cong \varinjlim_{n \in \mathbb{N}} \operatorname{Ext}_R^i(M/I^nM,N).$$

The reader can refer to [9, 18] for the basic properties of generalized local cohomology modules. An important problem in commutative algebra is determining when the set of associated primes of the *i*th local cohomology module $H_I^i(M)$ is finite. In [10], raised the following question: If M is a finitely generated R-module, then the set of associated primes of $H_I^i(M)$ is finite for all ideals I of R and all $i \ge 0$. In [11, 15, 17] the authors have given counterexamples to this conjecture. However, it is known that this conjecture is true in many situations; see [4, 5, 8, 13]. The purpose of this paper is to make a counterexample to above question in the context of general local cohomology modules. The theory of general local cohomology modules over commutative Noetherian ring introduced by M. H. Bijan-Zadeh in [3]. General local cohomology theory described as follows.

Let Φ be a non-empty set of ideals of R. We call Φ a system of ideals of R if, whenever $I, I' \in \Phi$, then there exists $J \in \Phi$ such that $J \subseteq II'$. Such a system of ideals gives rise to an additive, left exact functor

$$\Gamma_{\Phi}(M) = \{ x \in M : Ix = 0 \text{ for some ideal } I \in \Phi \}$$

from the category of *R*-modules and *R*-homomorphisms to itself. $\Gamma_{\Phi}(-)$ is called the Φ -torsion functor. For each $i \geq 0$, the *i*th right derived functor of $\Gamma_{\Phi}(-)$ is denoted by $H^{i}_{\Phi}(-)$. For an ideal *I* of *R*, if $\Phi = \{I^{n} : n \in \mathbb{N}\}$, then $H^{i}_{\Phi}(-)$ coincides with the ordinary local cohomology functor $H^{i}_{I}(-)$. Let $d \geq 0$ be an integer. We denote $\Gamma_{\Phi}(-)$ and $H^{i}_{\Phi}(-)$ by $\Gamma_{d}(-)$ and $H^{i}_{d}(-)$ respectively, for the system of ideals $\Phi = \{I : I \text{ is an ideal of R with dim } R/I \leq d\}$. The functor $\Gamma_{d}(-)$ was originally define in [1] and the modules $H^{i}_{d}(M)$ were called *d*-local cohomology modules associated to *M*. For $i \geq 0$, we define $H^{i}_{d}(-, -) : \mathfrak{C}(R) \times \mathfrak{C}(R) \to \mathfrak{C}(R)$ with

$$H^i_d(M,N) = \varinjlim_{\overline{I \in \Phi}} \operatorname{Ext}^i_R(M/IM,N),$$

and call it the *i*th generalized *d*-local cohomology module of M and N. Then $H_d^i(-,-)$ is an additive, R- linear functor which is contravariant in the first variable and covariant in the second variable. After some preliminary results in section 2, for a finitely generated module M with $pd_R(M) < \infty$ and an integer t we prove that

$$\operatorname{Ass}(H^t_d(M,N)) = \bigcup_{I \in \Phi} \operatorname{Ass}(\operatorname{Ext}^t_R(M/IM,N)) = \bigcup_{I \in \Phi} \operatorname{Ass}(H^t_I(M,N)),$$

where $\Phi = \{I : I \text{ is an ideal of } R \text{ with } \dim R/I \leq d\}$ and $H^i_d(M, N) = 0$ for all i < t. In section 3, we shall provide some results concerning vanishing and non-vanishing of generalized d-local cohomology modules: we shall prove that, over a local ring R, if the non-zero finitely

generated *R*-module *M* has Krull dimension *n* and $pd_R(M) < \infty$, then there exists an integer *i* with $0 \le i \le d$ such that $H_d^{n-i}(M, R) \ne 0$. We shall also prove that, when *R* is local Gorenstein of dimension *n*, then $H_d^i(M, R) \ne 0$ if and only if i = n - d. Furthermore, we shall prove that $H_d^{n-d}(M, R)$ is a non-Artinian module for which $\operatorname{Ass}(H_d^{n-d}(M, R)) = \{\mathfrak{p} \in \operatorname{Supp}(M) : \dim R/\mathfrak{p} = d\}.$

2. The Associated Primes

It is our intention in this section to present the relationship between the sets of associated primes of the generalized *d*-local cohomology modules and the ordinary generalized local cohomology modules. Its potential for use in arguments that employ the Grothendieck spectral sequence. So in this section, (R, \mathfrak{m}) is a local ring, I is an ideal of R, d is an integer and $\Phi = \{I : I \text{ is an ideal of } R \text{ with } \dim R/I \leq d\}.$

We say that M is a d-torsion module if $\Gamma_d(M) = M$, and it is d-torsion free if $\Gamma_d(M) = 0$.

Lemma 2.1. Let M and N be finitely generated R-modules and t be an integer such that $H^i_d(M, N) = 0$ for all i < t. Then the following statements are true:

- (i) $H_I^i(M,N) \subseteq H_d^i(M,N)$ for all $I \in \Phi$ and $i \leq t$.
- (ii) $H^i_c(M,N) \subseteq H^i_d(M,N)$ for all $c \leq d$ and $i \leq t$.

Proof. (i) It is clear that $\operatorname{Hom}_R(R/I, \Gamma_d(M, N)) \cong \operatorname{Hom}_R(M/IM, N)$ for $I \in \Phi$ so by [16, Theorem 11.38], the Grothendieck spectral sequence $E_2^{p,q} := \operatorname{Ext}_R^p(R/I, H_d^q(M, N))$ converges to $E^{p+q} := \operatorname{Ext}_R^{p+q}(M/IM, N)$. Because $E_{\infty}^{p,q}$ is a subquotient of $E_2^{p,q}$ so $E_{\infty}^{p,q} = 0$, for all q < t. On the other hand, there is a finite filtration

$$0 = F^{q+1}E^q \subseteq F^q E^q \subseteq \dots \subseteq F^1 E^q \subseteq F^0 E^q = E^q$$

of E^q such that $E_{\infty}^{p,q-p} \cong F^p E^q / F^{p+1} E^q$, for all $p = 0, 1, \dots, q$. Thus $E_{\infty}^{0,q} \cong E^q$, for all $q \leq t$. Also, for all $q \leq t$, the sequence $0 \longrightarrow E_2^{0,q} \longrightarrow E_2^{2,q-1}$ and $E_2^{2,q-1} = 0$ imply that $E_{\infty}^{0,q} \cong E_2^{0,q}$, for all $q \leq t$. Thus $E^q \cong E_2^{0,q}$. Hence, $\operatorname{Ext}_R^q(M/IM, N) \cong \operatorname{Hom}_R(R/I, H_d^q(M, N))$. Therefore,

$$\Gamma_I(H^q_d(M,N)) \cong \varinjlim_{n \in \mathbb{N}} \operatorname{Hom}(R/I^n, H^q_d(M,N)) \cong \varinjlim_{n \in \mathbb{N}} \operatorname{Ext}_R^q(M/I^nM, N) \cong H^q_I(M,N)$$

The proof is therefore complete.

(ii) The proof is similar to that of (i). \Box

Lemma 2.2. Let M and N be finitely generated R-modules and t be an integer such that $H^i_d(M, N) = 0$, for all i < t. Then the following statements are true: (i) $\operatorname{Ass}(H^i_I(M, N)) = \operatorname{Ass}(H^i_d(M, N)) \cap V(I)$, for all $I \in \Phi$ and $i \leq t$.

(ii) $\operatorname{Ass}(H^i_J(M,N)) \subseteq \operatorname{Ass}(H^i_I(M,N))$ for all $I, J \in \Phi$ with $I \subseteq J$ and $i \leq t$.

Proof. (i) Let $I \in \Phi$ and $i \leq t$. Then $\operatorname{Hom}_R(R/I, H^i_d(M, N)) \cong \operatorname{Hom}_R(R/I, H^i_I(M, N))$ and $\operatorname{Ass}_R(\operatorname{Hom}_R(R/I, H^t_d(M, N))) = \operatorname{Ass}(\operatorname{Hom}_R(R/I, H^t_I(M, N))) = \operatorname{Ass}(H^t_I(M, N))$, by the proof of Lemma 2.1 (i) and [12, Proposition 1.1]. Thus $\operatorname{Ass}(H^t_I(M, N)) = \operatorname{Ass}(H^t_d(M, N)) \cap V(I)$. (ii) It is obvious by (i). \Box

Lemma 2.3. If M is a d-torsion module, then $\text{Supp}(M) \subseteq \Phi$.

Proof. Let $\mathfrak{p} \in \text{Supp}(M)$. Then there exists $x \in M$ such that $\text{Ann}(x) \subseteq \mathfrak{p}$. By assumption there is an ideal I of R such that $I \in \Phi$ and Ix = 0. Thus $I \subseteq \text{Ann}(x) \subseteq \mathfrak{p}$ and $\mathfrak{p} \in \Phi$. \Box

Theorem 2.4. Let M and N be finitely generated R-modules and t be an integer such that $H^i_d(M, N) = 0$ for all i < t. Then

$$\operatorname{Ass}(H_d^t(M,N)) = \bigcup_{I \in \Phi} \operatorname{Ass}(\operatorname{Ext}_R^t(M/IM,N)) = \bigcup_{I \in \Phi} \operatorname{Ass}(H_I^t(M,N)).$$

Proof. First of all, we show that

$$\operatorname{Ass}(H_d^t(M, N)) = \bigcup_{I \in \Phi} \operatorname{Ass}(\operatorname{Hom}_R(R/I, H_d^t(M, N))).$$

It is clear that $\operatorname{Hom}_R(R/I, H_d^t(M, N)) \cong 0 :_{H_d^t(M,N)} I$. Therefore, $\operatorname{Ass}(H_d^t(M,N)) \supseteq \bigcup_{I \in \Phi} \operatorname{Ass}(\operatorname{Hom}_R(R/I, H_d^t(M, N)))$. Let $\mathfrak{p} \in \operatorname{Ass}(H_d^t(M, N))$. Then there exists $0 \neq m \in H_d^t(M, N)$ such that $\mathfrak{p} = \operatorname{Ann}(m)$ now from Lemma 2.3 it follows that $\mathfrak{p} \in \Phi$. Thus $m \in 0 :_{H_d^t(M,N)} \mathfrak{p} \cong \operatorname{Hom}_R(R/\mathfrak{p}, H_d^t(M,N))$ and therefore $\operatorname{Ass}(H_d^t(M,N)) \subseteq \bigcup_{I \in \Phi} \operatorname{Ass}(\operatorname{Hom}_R(R/I, H_d^t(M,N)))$. On the other hand, by the proof of Lemma 2.1, $\operatorname{Hom}_R(R/I, H_d^t(M,N)) \cong \operatorname{Ext}_R^t(M/IM, N)$. Hence, the result follows. \Box

Theorem 2.5. Let M and N be finitely generated R-modules and t be an integer such that $H^i_d(M, N) = 0$ for all i < t. Then $\operatorname{Ass}(H^t_d(M, N)) \subseteq \{\mathfrak{p} \in \operatorname{Supp}(M) : \dim R/p = d\}$ if and only if $H^t_c(M, N) = 0$ for all integer c with c < d.

Proof. Assume that $\operatorname{Ass}(H_d^t(M, N)) \not\subseteq \{\mathfrak{p} \in \operatorname{Supp}(M) : \dim R/\mathfrak{p} = d\}$. Thus there exists a prime ideal \mathfrak{p} belongs to $\operatorname{Ass}(H_d^t(M, N))$ such that $\dim R/\mathfrak{p} = c < d$. So the exact sequence $0 \to \Gamma_c(R/\mathfrak{p}) \to \Gamma_c(H_d^t(M, N))$ and the fact that $\Gamma_c(R/\mathfrak{p}) = R/\mathfrak{p}, \Gamma_c(H_d^t(M, N)) \cong H_c^t(M, N)$ show that $\mathfrak{p} \in \operatorname{Ass}(H_c^t(M, N))$. Hence, $H_c^t(M, N) \neq 0$. The converse is true by Lemmas 2.3 and 2.1. \Box

3. The vanishing theorems

In this section, we shall provide some results concerning the vanishing and non-vanishing of generalized d-local cohomology modules. Throughout R is a local ring with maximal ideal \mathfrak{m} and d is a non negative integer.

Theorem 3.1. Let (R, \mathfrak{m}) be a local Gorenstein ring of dimension n and let M, N be finitely generated R-modules such that $\operatorname{Ass}_R(M) \cap \operatorname{Supp}(N) \neq \emptyset$ and $pd_R(M) < \infty$. Then there is at lest one j with $0 \leq j \leq d$ for which $H_d^{n-j}(M, N) \neq 0$.

Proof. It is easy to see that $\Gamma_{\mathfrak{m}}(\Gamma_d(M,N)) = \Gamma_{\mathfrak{m}}(M,N)$ so there is a Grothendieck spectral sequence

$$E_2^{i,j}=H^i_{\mathfrak{m}}(H^j_d(M,N)) \Rightarrow E^{i+j}=H^{i+j}_{\mathfrak{m}}(M,N),$$

see [16, Theorem 11.38]. By Lemma 2.3, $\operatorname{Supp}(H_d^j(M, N)) \subseteq \Phi$. Thus dim $H_d^j(M, N) \leq d$ and so $E_2^{i,j} = 0$ for all i > d, by [6, Theorem 6.1.2]. On the other hand, there is a finite filtration $0 = F^{n+1}E^n \subseteq F^nE^n \subseteq \cdots \subseteq F^1E^n \subseteq F^0E^n = E^n$ with $E_{\infty}^{i,n-i} \cong F^iE^n/F^{i+1}E^n$. Then $F^{d+1}E^n = \cdots = F^nE^n = 0$. If $E_{\infty}^{j,n-j} = 0$, for all j with $0 \leq j \leq d$, then $F^dE^n = \cdots =$ $F^0E^n = E^n = 0$ contrary to [7, Lemma 2.4]. So suppose that $E_{\infty}^{j,n-j} \neq 0$ for some j with $0 \leq j \leq d$. Thus $E_2^{j,n-j} \neq 0$ and then $H_d^{n-j}(M, N) \neq 0$. \Box

Theorem 3.2. Let R be a Gorenstein local ring of dimension n and M be a R- module with $pd_R(M) < \infty$. Then the following statements are true:

(i) $H^i_d(M, R) = 0$ for all $0 \le i < n - d$ and $H^i_d(M, R) \cong \operatorname{Ext}^i_R(M, R)$ for all $n - d \le i \le n$. (ii) If $0 \le d \le \dim M$, then $\operatorname{Ass}(H^{n-d}_d(M, R)) = \{\mathfrak{p} \in \operatorname{Supp}(M) : \dim R/\mathfrak{p} = d\}$ and $H^{n-d}_d(M, R) \ne 0$.

(iii) If $0 < d \le \dim M$, then $H_d^{n-d}(M, R)$ is a Noetherian module which is not Artinian.

Proof. (i) Let $0 \to R \to E^0 \to E^1 \to \cdots \to E^{n-1} \to E^n \to 0$ be a minimal injective resolution of R. Then by [14, Theorems 18.1 and 18.8] we have $E^i \cong \bigoplus_{ht(\mathfrak{p})=i} E(R/\mathfrak{p}) = \bigoplus_{\dim R/\mathfrak{p}=n-i} E(R/\mathfrak{p})$. If i < n-d, then $\dim R/\mathfrak{p} = n-i > d$ and so $\mathfrak{p} \notin \Phi$. Thus $\Gamma_d(E^i) = 0$ and so $\operatorname{Hom}(M, \Gamma_d(E^i)) = 0$. It follows that $H^i_d(M, R) = 0$, for all $0 \le i < n-d$. If $i \ge n-d$, then $\dim R/\mathfrak{p} = n-i \le n-(n-d) = d$, and so $\mathfrak{p} \in \Phi$. Thus $\Gamma_d(E^i) = E^i$ and $\operatorname{Hom}(M, \Gamma_d(E^i)) = \operatorname{Hom}(M, E^i)$. It follows that $H^i_d(M, R) \cong \operatorname{Ext}^i_R(M, R)$ for all $n-d \le i \le n$. (ii) It is immediate that

(ii) It is immediate that

$$\operatorname{Ass}(H^{n-d}_{d}(M,R)) \subseteq \operatorname{Ass}(\operatorname{Hom}_{R}(M, \bigoplus_{\dim R/\mathfrak{p}=d} E(R/\mathfrak{p})))$$
$$= \{\mathfrak{p} \in \operatorname{Supp}(M) : \dim R/\mathfrak{p} = d\}.$$

If $\mathfrak{p} \in \operatorname{Supp}(M)$ and $\dim R/\mathfrak{p} = d$, then by [19, Lemma 2.1(5)], $(H_d^{n-d}(M,R))_\mathfrak{p} \cong H_0^{n-d}(M_\mathfrak{p},R_\mathfrak{p}) \cong H_{\mathfrak{p}R_\mathfrak{p}}^{n-d}(M_\mathfrak{p},R_\mathfrak{p}) \cong H_{\mathfrak{p}R_\mathfrak{p}}^{n-d}(M_\mathfrak{p},R_\mathfrak{p}) \cong \operatorname{Supp}(M_\mathfrak{p},R_\mathfrak{p}) \cong H_{\mathfrak{p}R_\mathfrak{p}}^{n-d}(M_\mathfrak{p},R_\mathfrak{p}) \cong 0$ by [7, Lemma 2.4]. Hence, \mathfrak{p} is a minimal element of $\operatorname{Supp}(H_d^{n-d}(M,R))$ and therefore $\mathfrak{p} \in \operatorname{Ass}(H_d^{n-d}(M,R))$.

(iii) By the proof of (ii), $Ass(H_d^{n-d}(M, R)) \not\subseteq Max(R)$ so that $H_d^{n-d}(M, R)$ is not Artinian.

Theorem 3.3. Let (R, \mathfrak{m}) be a local ring and M, N two finitely generated R-modules with $pd(M) < \infty$. If t is a non-negative integer such that pd(M) < t, then the following statements are equivalent:

(i) $H^i_d(M, N)$ is finitely generated, for all $i \ge t$; (ii) $H^i_d(M, N) = 0$, for all $i \ge t$.

Proof. (i) \Rightarrow (ii). We use induction on $n = \dim N$. When n = 0, we have $H_d^i(M, N) = 0$, for all $i \ge t$, see [19, Theorem 4.1]. Assume inductively, that n > 0 and that the result has been proved for finitely generated *R*-modules of dimension n - 1. The exact sequence

$$0 \to \Gamma_d(N) \to N \to N/\Gamma_d(N) \to 0$$

yields the long exact sequence

$$\cdots \to H^i_d(M, \Gamma_d(N)) \to H^i_d(M, N) \to H^i_d(M, N/\Gamma_d(N)) \to \cdots$$

By [19, Lemma 2.1(3)], $H^i_d(M, \Gamma_d(N)) \cong \operatorname{Ext}^i(M, \Gamma_d(N))$, for all $i \geq 0$. Thus we have $H^i_d(M, \Gamma_d(N)) = 0$ and $H^i_d(M, N/\Gamma_d(N)) \cong H^i_d(M, N)$, for all i > pd(M). Hence, we may assume, by replacing N with $N/\Gamma_d(N)$, that N is d-torsion free module. So there exists $x \in \mathfrak{m}$ which is a non-zero divisor on N. The exact sequence

$$0 \to N \xrightarrow{x} N \to N/xN \to 0$$

induces the long exact sequence

$$\cdots \to H^i_d(M,N) \xrightarrow{x} H^i_d(M,N) \to H^i_d(M,N/xN) \to H^{i+1}_d(M,N) \to \cdots$$

which implies that $H^i_d(M, N/xN)$ is finitely generated, for all $i \ge t$. Since N/xN is a finitely generated *R*-module with dim N/xN = n-1 thus by the inductive hypothesis $H^i_d(M, N/xN) = 0$, for all $i \ge t$. Therefore, $H^i_d(M, N) \cong xH^i_d(M, N)$, for all $i \ge t$. Hence, $H^i_d(M, N) = 0$, for all $i \ge t$, by Nakayma's Lemma.

$$(ii) \Rightarrow (i)$$
. It is clear.

4. The Artinianness theorems

Theorem 4.1. Let M be a finitely generated R-module and N be an Artinian R-module, then $H^i_d(M, N)$ is Artinian, for all $i \ge 0$.

Proof. We are going to argue by induction on i. In the case where i = 0, we see from $\Gamma_d(M, N) = \operatorname{Hom}(M, \Gamma_d(N))$ that $H^0_d(M, N)$ is Artinian. Now suppose, inductively, that i > 0 and that the result has been proved for all integers less than i. Let E(N) be the injective envelope of N. We have the exact sequence

$$0 \to N \to E(N) \to E(N)/N \to 0$$

which induces a long exact sequence

$$\cdots \to H^{i-1}_d(M, E(N)/N) \to H^i_d(M, N) \to H^i_d(M, E(N)) \to \cdots.$$

Since $H^i_d(M, E(N)) = 0$, for all i > 0, thus $H^{i-1}_d(M, E(N)/N) \cong H^i_d(M, N)$, for all i > 1. By hypothesis N is Artinian so E(N) is Artinian thus by induction hypothesis $H^{i-1}_d(M, E(N)/N)$ is Artinian. Hence, $H^i_d(M, N)$ is Artinian. This completes the inductive step. \square

Theorem 4.2. Let (R, \mathfrak{m}) be a local ring and M, N be two finitely generated R-modules with r = pd(M) and $n = \dim(N)$. Then

$$H_d^{r+n}(M,N) \cong \operatorname{Ext}_R^r(M,H_d^n(N)).$$

In particular, $H_d^{r+n}(M, N)$ is an Artinian R-module.

Proof. By [16, Theorem 11.38], there is a Grothendieck spectral sequence,

$$E_2^{p,q} := \operatorname{Ext}_R^p(M, H_d^q(N)) \Rightarrow E^{p+q} := H_d^{p+q}(M, N).$$

We have $H_d^q(N) = 0$, for all q > n, see [3, Lemma 2.1] and [6, Theorem 6.1.2]. Then $E_2^{p,q} = 0$, for all p > r or q > n. We have $E_k^{r-k,n+k-1} = E_k^{r+k,n+1-k} = 0$, for all $k \ge 2$, and homomorphisms of the spectral

$$E_k^{r-k,n+k-1} \to E_k^{r,n} \to E_k^{r+k,n+1-k}$$

so $E_2^{r,n} = E_3^{r,n} = \cdots = E_{\infty}^{r,n}$. It is enough to prove that $E_{\infty}^{r,n} \cong H_d^{r+n}(M,N)$. There is a filtration

$$0 = F^{r+n+1}H^{r+n} \subseteq \dots \subseteq F^1H^{r+n} \subseteq F^0H^{r+n} = H^{r+n}_d(M,N)$$

and

$$E_{\infty}^{i,r+n-i} \cong F^i H^{r+n} / F^{i+1} H^{r+n}$$

for all
$$0 \le i \le r+n$$
. Thus $E_2^{i,r+n-i} = \operatorname{Ext}_R^i(M, H_d^{r+n-i}(N)) = 0$ for all $i \ne r$. Hence
 $F^{r+1}H^{r+n} = F^{r+2}H^{r+n} = \dots = F^{r+n+1}H^{r+n} = 0$

and

$$F^{r}H^{r+n} = F^{r-1}H^{r+n} = \dots = F^{n}H^{r+n} = H^{r+n}_{d}(M, N).$$

This gives

$$E_{\infty}^{r,n}\cong F^rH^{r+n}/F^{r+1}H^{r+n}\cong H^{r+n}_d(M,N).$$

So $\operatorname{Ext}_{R}^{r}(M, H_{d}^{n}(N)) \cong H_{d}^{r+n}(M, N)$. By [2, Theorem 3.1], $H_{d}^{n}(N)$ is an Artinian *R*-module, therefore $H_{d}^{r+n}(M, N)$ is also Artinian. \Box

Theorem 4.3. Let M be a finitely generated R-module and N be an R-module. Let t be a non-negative integer such that $H^i_d(N)$ is Artinian for all i < t. Then the following statements are true:

(i) $H^i_d(M, N)$ is Artinian, for all i < t.

(ii) $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, N)$ is Artinian, for all i < t and for all $\mathfrak{a} \in \Phi$.

Proof. (i) We use induction on t. When t = 1, $\text{Hom}(M, \Gamma_d(N))$ is Artinian so that $\Gamma_d(M, N)$ is Artinian since $\Gamma_d(M, N) = \text{Hom}(M, \Gamma_d(N))$, see [19, Lemma 2.1(1)]. Now suppose that t > 1 and that the result has been proved for each integer less than t. Let E(N) be the injective envelope of N. Then we have the exact sequence

$$0 \to N \to E(N) \to E(N)/N \to 0.$$

Applying the functors $\Gamma_d(-)$ and $\Gamma_d(M,-)$, we get isomorphisms $H^i_d(E(N)/N) \cong H^{i+1}_d(N)$ and $H^i_d(M, E(N)/N) \cong H^{i+1}_d(M, N)$ for all i > 0. From the hypothesis, $H^i_d(N)$ is Artinian for all i < t, thus $H^i_d(E(N)/N)$ is Artinian for all i < t - 1. By the inductive hypothesis on E(N)/N, $H^i_d(M, E(N)/N)$ is Artinian, for all i < t - 1. Then by second isomorphism $H^i_d(M, N)$ is Artinian, for all i < t.

(ii) We use induction on t. When t = 1, we have the exact sequence

$$0 \to \Gamma_d(N) \to N \to N/\Gamma_d(N) \to 0$$

thus there is a long exact sequence

 $0 \to \operatorname{Hom}(R/\mathfrak{a}, \Gamma_d(N)) \to \operatorname{Hom}(R/\mathfrak{a}, N) \to \operatorname{Hom}(R/\mathfrak{a}, N/\Gamma_d(N)) \to \cdots$

As $N/\Gamma_d(N)$ is Φ -torsion-free, $\operatorname{Hom}(R/\mathfrak{a}, N/\Gamma_d(N)) = 0$ and

$$\operatorname{Hom}(R/\mathfrak{a}, N) \cong \operatorname{Hom}(R/\mathfrak{a}, \Gamma_d(N)).$$

Since $\Gamma_d(N)$ is Artinian *R*-module, then $\operatorname{Hom}(R/\mathfrak{a}, \Gamma_d(N))$ is Artinian *R*-module. The proof for t > 1 is similar to that of (i). \Box

5. Acknowledgment

The authors are deeply grateful to the referee for his/her careful reading of the manuscript and very helpful suggestions.

References

- C. Banica and M. Stoia, Singular sets of a module and local cohomology modules, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., Vol. 16 (1976), pp. 923–934.
- M. H. Bijan-Zadeh, On the Artinian property of certain general local cohomology modules, J. London Math. Soc., Vol. 32 (1985), pp. 399–403.
- M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J. Vol. 21 (1980), pp. 173–181.
- [4] M. P. Brodmann and A. Lashgari Faghani, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc. Vol. 128 (2000), pp. 2851–2853.
- [5] M. P. Brodmann, C. Rotthous and R. Y. Sharp, On annihilators and associated primes of local cohomology module, J. Pure Appl. Algebra Vol. 135 (2000), pp. 197–227.
- [6] M. P. Brodmann and R. Y. Sharp, Local cohomology an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, (1998).
- [7] K. Divaani Aazar, R. Sazeedeh and M. Tousi, On vanishing of generalized local cohomology modules, Algebra Colloq., Vol. 12 (2005), pp. 213–218.
- [8] M. Hellus, On the set of associated primes of a local cohomology modules, J. Algebra Vol. 237 (2001), pp. 406–419.
- [9] J. Herzog, Komplexe Suflosungen und Dualiat in der lokalen Algebra, Universitat Regensburg, Preprint, (1974).
- [10] C. Huneke, Problems on local cohomology modules. Free Resolution in Commutative Algebra and Algebraic Geometry. (Sundance, UT, 1990), Res. Notes Math., 2, Jones and Bartlett, Boston, MA, (1992), pp. 93–108.
- [11] M. Katzman, An example of an infinite set of associated primes of local cohomology modules, J. Algebra Vol. 252 (2002), pp. 161–166.
- [12] T. Marley, Associated primes of local cohomology modules over rings of small dimension, Manuscripta Math., Vol. 104 (2001), pp. 519–525.
- T. Marley, The associated primes of local cohomology modules over rings of small dimension, Manuscripta Math. Vol. 104 (2001), pp. 519–525.
- [14] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, (1986).
- [15] Z. Rahimi, Sh. Payrovi and S. Babaei, On the associated primes of the d-local cohomology modules, Int. Elec. J. Alg. Vol. 25 (2019), pp. 55–63.
- [16] J. Rotman, Introduction to homological algebra, Academic Press, Orlando, (1979).

- [17] A. K. Singh, p-Tortion element in local cohomology modules, Math. Res. Lett. Vol. 7 (2000), pp. 165–176.
- [18] N. Suzuki, On the generalized local cohomology and its duality, J. Math. Kyoto Univ., 18 (1978), pp. 71-78.
- [19] N. Zamani, M. H. Bijan-Zadeh and M. S. Sayedsadeghi, Cohomology with supported of dimension ≤ d, J. Alg. Appl. 15 (2016), 1650042 (10 pages).

Z. Rahimi-Molaei

Department of Mathematics, Imam Khomeini International University, Postal Code: 34149-1-6818, Qazvin, Iran. z.rahimi@edu.ikiu.ac.ir

Sh. Payrovi

Department of Mathematics, Imam Khomeini International University, Postal Code: 34149-1-6818, Qazvin, Iran. shpayrovi@sci.ikiu.ac.ir

S. Babaei

Department of Mathematics, Imam Khomeini International University, Postal Code: 34149-1-6818, Qazvin, Iran. sakinehbabaei@gmail.com