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ISOGENY-BASED CERTIFICATELESS IDENTIFICATION SCHEME

HASSAN DAGHIGH* AND RUHOLLA KHODAKARAMIAN GILAN

Abstract. In this paper, we propose a new certificateless identification scheme based on

isogenies between elliptic curves that is a candidate for quantum-resistant problems. The

proposed scheme has the batch verification property which allows verifying more than one

identity by executing only a single challenge-response protocol.

1. Introduction

In 1978, Rivest, Shamir and Adleman [13] proposed the first public-key encryption scheme

that allows an entity to securely send a message to another entity without sharing any secret

key between two parties. The fundamental point of public-key encryption is generating a pair

of keys instead of just one, a public key for encryption and a related private key for decryption.

Despite its many benefits, history has shown that public key encryption faces a significant

practical problem: the sender has to be sure that the used public key is indeed the intended

receiver’s public key. Therefore, the presence of a trusted third party who can be relied upon to

check a receiver’s identity and guarantee the accuracy of the public key seems to be necessary.

Hence the user has to bind his public key to his identity using a certificate obtained from a
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certificate authority. Nevertheless, this method leads to the certificate management problem

as the number of users increases.

The same problem occurs in identification schemes in which a prover tries to confirm his

identity such that an intruder watching the information flow, cannot easily impersonate the

prover’s identity. In 1984, Shamir proposed the idea of identity-based cryptography to deal

away with the problem of certificate management [14]. However, the first identity-based iden-

tification schemes were proposed by Bellare et al. [2] and Kurosawa [12] in 2004 independently.

In these schemes, Bellare and Kurosawa replaced the public key infrastructure with a trusted

authority to compute the private key for the users. This method seemed to be more efficient

than the certificate-based scheme, but the disadvantage was that the trusted authority who

had created the private key pairs had access to the user’s private key in the system.

In 2003, Al-Riyami and Paterson introduced the notion of certificateless public key cryp-

tography, that escaped the weakness of identity-based cryptography despite maintaining its

attractive properties [1]. In this scheme, the idea is that the trusted third party called the Key

Generation Center (KGC) generates a partial private key for each user. Then the user com-

bines the private key with its own selected secret value to create his full private key. Therefore,

the key generation center doesn’t have access to the user’s full private key. After presenting

this approach, many certificateless encryption and identification schemes have appeared with

many security assumptions in literature. Using the user-selected secret value in certificateless

public key cryptography, not only removes the inherited key escrow property from the identity-

based public key cryptosystem but also makes the user free from obtaining a certificate from

the trusted authority to establish the authenticity of his public key.

In 2013, Chin et al. proposed the first model of certificateless identification scheme (CLI) in

[5] which offered an alternative solution to the certificate management problem of traditional

identification schemes. The security of many of the current identification schemes are based

on the hardness of discrete logarithm problem. Since the appearance of quantum computers

in the future may cause a serious threat to the security of these protocols, post-quantum cryp-

tography searches to design cryptosystems that are secure against both quantum and classical

computers simultaneously. Some of these quantum-resistant cryptosystems are lattice-based

cryptosystems, code-based cryptosystems, McEliece cryptosystem and multivariate public key

cryptography.

Isogeny-based cryptosystems seem to be a promising candidate for quantum-resistant cryp-

tography. In 2011, Luca de Feo et al. proposed a new quantum-resistant zero-knowledge

identification scheme using isogenies between supersingular elliptic curves and detailed secu-

rity proofs for the protocols [9]. In this paper, we propose a new certificateless identification
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scheme using isogenies between elliptic curves. This scheme is a challenge-response identifica-

tion protocol using pairings on elliptic curves. Moreover, it has the batch verification property

which means that by a single execution of the protocol, the verifier can check more than one

identity at the same time. Developing a sub-exponential time quantum algorithm to break

isogenies between ordinary elliptic curves by Childs et al. [4] motivates us to use supersingular

elliptic curves for which the fastest known quantum attack remains exponential because of the

non-commutativity of the endomorphism ring.

In this paper, we first briefly review the concept of elliptic curves, isogenies and some useful

properties of these maps in section 2. In section 3, we present a certificateless identification

scheme first proposed by Chin et al. [6]. Then we continue with constructing a certificateless

identification scheme on the additive group of elliptic curves inspired by Chin et al. [6] scheme

on multiplicative groups. In section 4, we present our certificateless identification scheme using

isogenies between elliptic curves. This protocol can be applied specially on supersingular

elliptic curves to increase the security against quantum attacks due to the existence of a

subexponential attack for the isogeny problem for ordinary elliptic curves. Moreover, the

proposed scheme has the batch verification property and can be used to verify more than one

identity by executing a single challenge-response protocol.

2. Preliminaries

Elliptic Curves and Isogenies: In this section, we introduce some basic concepts in

elliptic curves. For more details, one can refer to [15, 20].

Definition 2.1. Let q = pα, where p is a prime number and α is a positive integer. An elliptic

curve E over the finite field Fq is a non-singular projective plane curve defined by the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, a2, a3, a4, a6 ∈ Fq

In characteristic p ̸= 2, 3, this equation can be reduced to the short form

E : y2 = x3 + ax+ b, a, b ∈ Fq

Moreover, the set of Fq-rational points of E is defined as

E(Fq) = {(x, y) ∈ E | x, y ∈ Fq} ∪ {O}.

where O is the point at infinity.

The set E(Fq) forms an abelian additive group with O as the trivial element. For a point

P ∈ E(Fq), the order of P is the least positive integer n such that nP = O and it is denoted

by ord(P ).

In the following, we consider maps between elliptic curves that preserve the algebraic struc-

ture of the group of points of elliptic curves.
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Definition 2.2. Let E1 and E2 be two elliptic curves defined over the finite field Fq. An

isogeny ϕ : E1 → E2, is an algebraic map which is a group homomorphism.

For every isogeny ϕ : E1 → E2, the degree of ϕ which is its degree as an algebraic map, is

denoted by deg(ϕ). For separable isogenies, we have deg(ϕ) = |ker(ϕ)|. Two elliptic curves E1

and E2 are l-isogenous if there exists an isogeny of degree l from E1 to E2. For every l-isogeny

ϕ : E1 → E2, there exists an l-isogeny ϕ̂ : E2 → E1 such that ϕϕ̂ = [l]E2 and ϕ̂ϕ = [l]E1 , where

[l]Ei is the multiplication-by-l map on Ei for i = 1, 2. The isogeny ϕ̂ is called the dual of ϕ.

By Tate’s theorem, two elliptic curves E1 and E2 are isogenous over the finite field Fq if

and only if they have the same number of points over Fq [18].

For every subgroup G of E1, there exists an elliptic curve E2 (unique up to isomorphism)

and an isogeny ψ : E1 −→ E2 with kernel G. This isogeny can be computed using Velu’s

formula or using kernel polynomial of the subgroup G [11].

The group of all isogenies from E1 to E2 is denoted by Hom(E1, E2) and End(E) =

Hom(E,E) denotes the endomorphism ring of the curve E.

According to During’s theorem [8], End(E) is either an order in an imaginary quadratic

field or an order in a quaternion algebra over Q. An elliptic curve E is called ordinary in the

first case and supersingular in the second case. supersingular elliptic curves are an important

family of elliptic curves in isogeny-based quantum cryptography due to the hardness of finding

an isogeny between given supersingular curves. The most well-known family of these curves

are as follows:

i) y2 + y = x3 + b over F2m , m odd.

ii) y2 = x3 + ax over Fpm , where p ≡ 3 (mod 4).

iii) y2 = x3 + b over Fpm , where p ≡ 2 (mod 3).

In the following, we consider the notion of Weil pairing on elliptic curves. Let E[r] = {P ∈
E(F̄q) | rP = O} where F̄q is an algebraic closure of Fq and µr = {g ∈ F̄q | gr = 1}. The Weil

pairing er is a map

er : E[r]× E[r] −→ µr

with the following properties [15]:

(1) For S1, S2, T ∈ E[r],

er(S1 + S2, T ) = er(S1, T )er(S2, T ),

er(T, S1 + S2) = er(T, S1)er(T, S2).

(2) for S, T ∈ E[r],

er(P, P ) = 1

er(S, T ) = er(T, S)
−1

(3) There is an efficient algorithm to compute er(P,Q) for every P,Q ∈ E[r].
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(4) For the isogeny ϕ : E1 → E2 and P ∈ E1[r] and Q ∈ E2[r], we have

er(P, ϕ̂(Q)) = er(ϕ(P ), Q).

3. Certificateless Identification Scheme

In this section, we briefly present the structure of Certificateless Identification scheme (CLI),

first introduced by Chin et al. in [6] and then we review the CLI scheme proposed in [6] on

elliptic curves to see an example (ECLI).

3.0.1. Framework of certificateless identification scheme. Certificateless Identification

scheme, includes six basic algorithms as follows:

Setup The KGC executes the Setup algorithm. The input of this algorithm is the

security parameter 1k and the output is the master secret key msk and master public

key mpk. The KGC keeps secret msk and publishes mpk.

Partial-Private-Key-Extract The KGC runs this algorithm. The KGC takes the

user’s identity ID as input and generates partial private key ppkID. Then he sends

the generated ppkID securely to the user.

Set-User-Key This algorithm is done by the user. It takes in the security parameter

1k and the user’s identity ID as input and generates user’s secret value svID and its

corresponding public key upkID.

Set-Private-Key The user runs this algorithm. Using identity ID, public key

upkID, the secret value svID and partial private key ppkID, the algorithm returns the

user’s secret key usk.

Identification-Protocol: This protocol consists of two algorithms Prover and

Verifier. It is a challenge-response interaction between prover and verifier to confirm

the user’s identity. Both algorithms take the values of upkID,mpk and prover’s identity

ID as input. The prover takes also usk as the user’s private key and starts to perform

the protocol as follows:

1) Prover sends the commitment to the Verifier.

2) Verifier sends the a value as the challenge to the Prover.

3) Prover sends the response to the Verifier and verifier will confirm the prover’s

identity if he could pass the verification test successfully.

3.1. ECLI Scheme. In [6], Chin et al. provide an efficient pairing-free CLI scheme which

is also free from the key escrow and certificate management problem. In the following, we

represent this scheme on the additive group of points of an elliptic curve over a finite field.

Setup (1k)



88 Alg. Struc. Appl. Vol. 6 No. 1 (2019) 83-97.

1. For security parameter k and finite field Fq, define an elliptic curve E over Fq

and for the random element a ∈ Z∗
q , set PKGC = aP .

2. Select two hash functions H1 : {0, 1}∗ × E(Fq)× E(Fq) → Z∗
q and H2 : {0, 1}∗ ×

E(Fq)× E(Fq)× E(Fq) → Z∗
q .

4. Publish the master public key mpk = {E, q,H1,H2, PKGC , P} and keep the

master secret key msk = a.

Partial-Private-Key-Extract(mpk, msk, ID)

1. Select a random element x ∈ Z∗
q and compute X = xP ,

2. Compute α = H1(ID, PKGC , X),

3. Compute d = x− aα,

3. Return the partial private key ppk = ⟨α, d⟩.

Set-User-Key(1k)

1. Select a random b ∈ Z∗
q and set sID = b as the secret value of the user,

2. Compute Q = bP ,

3. Output Upk1 = Q.

Set-Private-Key(mpk, ppk, sID, Upk, ID)

1. Calculate X = dP + αPKGC and check if α = H1(ID, PKGC , X),

2. If correct, then calculate β = H2(ID, PKGC , X,Q),

3. Compute sID = d− bβ,

4. Compute Upk2 = βQ,

5. Publish Upk = ⟨Upk1, Upk2⟩ and keep secret Usk = ⟨α, β, sID⟩.

Identification-Protocol: Prover (mpk, ID,Usk) and Verifier (mpk, ID,Upk)

1. Prover selects a random r ∈ Z∗
q and compute R = rP .

2. Prover also computes X = sIDP + αPKGC + βQ and sends X,R to Verifier.

3. Verifier selects a random c ∈ Z∗
q and sends c to Prover.

4. Prover Computes response y = r + csID and sends y to Verifier.

5. Verifier accepts if and only if yP = R+c(X−(αPKGC+βQ)) and Upk2 = β.Upk1,

where α = H1(ID, PKGC , X) and β = H2(ID, PKGC , X,Q).

To prove correctness, one can show that

yP = (r + cSID)P

= rP + c(x− (aα+ bβ))P

= R+ c(X − (αPKGC + βQ))
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4. Our New Scheme

In this section, we introduce our certificateless scheme using isogenies between supersingular

elliptic curves. The security of this scheme is based on the problem of finding isogenies between

supersingular elliptic curves which is quantum-resistant [9] and some pairing problems. Then

we generalize the proposed scheme such that the verifier can verify more than one identity by

a single execution of the protocol.

Setup (1k)

1. For security parameter k, KGC selects the finite field Fq and a supersingular

elliptic curve E1 over Fq.

2. It selects a point G ∈ E1 and computes an isogeny ϕ : E1 → E2 = E1/⟨G⟩. Then
it selects a point P ∈ E2 and sets PKGC = ϕ̂(P ) ∈ E1.

3. It selects a hash function H : {0, 1}∗ → E1.

4. It publishes the master public key mpk = {q, E1, E2,H, PKGC , P} and keeps the

master secret key msk = G.

Partial-Private-Key-Extract (mpk, msk, ID)

1. KGC computes QID = H(ID) ∈ E1 and a positive integer n such that P,QID ∈
E1[n] and e1(PKGC , QID) ̸= 1 where e1 : E1[n] × E1[n] → µn be the Weil pairing

defined over E1[n].

2. It computes SID = ϕ(QID).

3. It returns the partial private key ppk = (SID, n).

Set-User-Key (1k)

1. User selects a random b ∈ Zn, P
′ ∈ E2[n] and sets the user’s secret value

sID = (b, P ′).

Set-Private-Key (mpk, ppk, sID, Upk, ID)

1. User checks e2(P, SID) = e1(PKGC , QID) where e2 : E2[n] × E2[n] → µn be the

Weil pairing defined over E2[n].

2. If correct, then he selects a point P ′ randomly and computes an isogeny ψ : E2 →
E3 = E2/⟨bSID + P ′⟩.

3. He computes Upk = ψ(bP ). Then publishes Upk and the Weil pairing e3 :

E3[n]× E3[n] → µn.

4. He sets Usk = bSID + P ′.

Identification-Protocol: Prover (mpk, ID,Usk) and Verifier

(mpk, ID,Upk, PKGC)

1. Prover selects a random point R ∈ E3.
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2. Prover computes the commitment S = R + ψ(SID) and sends (S,E3, n) to

Verifier.

3. Verifier checks if e3(Upk, S) ̸= 1, then he selects a random d ∈ Z∗
n and sends d

to Prover.

4. Prover computes the response Y = d Usk + bψ̂(S) + SID and W = e2(P,Usk)

and then sends (Y,W ) to Verifier.

5. Verifier accepts if and only if e2(P, Y ) = e3(Upk, S)e1(PKGC , QID)W
d.

Remark 4.1. To impersonate user ID, the adversary should compute Y = d Usk+bψ̂(S)+SID

in the verification step. To compute this point, the adversary should know Usk = Kernel(ψ)

and SID = ϕ(QID), which requires knowing ϕ and ψ.

Lemma 4.2. The previous scheme has the completeness and soundness properties.

Proof. We prove that a legitimate user can be verified by an honest verifier as follows.

e2(P, Y ) = e2(P, bψ̂(S) + SID + d Usk)

= e2(P, bψ̂(S))e2(P, SID)e2(P, bSID + P ′)d

= e3(bψ(P ), S)e1(ϕ̂(P ), QID)W
d

= e3(Upk, S)e1(PKGC , QID)W
d.

To prove the soundness property, we show that forging the user’s identity at least twice

implies that the cheater has some parts of the user’s secret key or is able to compute them.

We assume that the values (Y1, d1) and (Y2, d2) are true in the verification relation. Therefore

Usk = (Y2 − Y1)(d2 − d1)
−1 and cheater can have access to the value Usk.

4.1. Batch Verification Scheme. In this section, we show that we can extend our proposed

protocol such that a user could be able to verify a bunch of identities instead of only once.

This idea helps the user to efficiently execute the protocol only once to verify many identities

at the same time. Assume that we have a bunch of identities {ID1, . . . , IDk}, so the user

obtains the corresponding private keys {S1
ID = ϕ(Q1

ID), . . . , S
k
ID = ϕ(Qk

ID)} from the KGC,

where Qi
ID = H(IDi) for i = 1, . . . , k. Let S̄ID =

k∑
i=1

Si
ID and Q̄ID =

k∑
i=1

Qi
ID. To verify the
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private keys, the user checks if e2(P, S̄ID) = e1(PKGC , Q̄ID). This equality holds because

e2(P, S̄ID) = e2(P,

k∑
i=1

Si
ID)

= e2(P,

k∑
i=1

ϕ(Qi
ID))

= e2(P, ϕ(
k∑

i=1

(Qi
ID))

= e1(ϕ̂(P ),

k∑
i=1

Qi
ID)

= e1(PKGC , QID).

In the identification step, the prover selects R ∈ E3 and sends S = R+ψ(S̄ID) to verifier. By

receiving the value d ∈ Fq from the verifier, user sends the response Y = d Usk + bψ̂(S) + SID

and W = e2(P,Usk) to verifier. Then verifier checks if

e2(P, Y ) = e3(Upk, S)e1(PKGC , Q̄ID)W
d.

5. Efficiency and Security Analysis

In this section, we analyze the complexity and security of our proposed identification scheme

and then we review the reset attack and its effect on our protocol.

In the following, we consider the required tools and their computational complexity to exe-

cute each step of our protocol and then we summarize the total number of needed operations in

Table 5. One of the essential requirements of implementing the proposed protocol is construct-

ing an isogeny when its kernel is available. As we see in the scheme, KGC needs to construct

the isogeny ϕ and the user needs to construct the isogeny ψ in the Setup and Set-Private-

Key algorithms respectively. The following procedure shows that how we can construct such

isogenies in general.

Let E be an elliptic curve. Then for each subgroup G of E with |G| = ℓ, there exists an

isogeny ϕ : E → E′ = E/G (unique up to isomorphism) with ker(ϕ) = G. In order to find

such an isogeny, one can use the Velu’s formula with the running time O(ℓ) [19]. Moreover, in

the case where |G| = ℓe and ℓ is a small prime, one can use the Jao’s efficient proposition [9]

to compute ϕ as follows. Set E0 = E, G0 = G and compute

Ei+1 = Ei/⟨ℓe−i−1Gi⟩, ϕi : Ei → Ei+1, Gi+1 = ϕi(Gi)

for i = 0, . . . , e− 1. Then E/⟨G⟩ = Ee and ϕ = ϕe−1 ◦ · · · ◦ ϕ0.
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We also need to compute dual of isogenies during the execution of the protocol. Since

Ker(ϕ̂) = ϕ(E[l]), one can compute the dual isogeny ϕ̂ of an l-isogeny ϕ using the Velu’s

formula.

We also need to compute some pairings during the execution of the protocol. Miller’s

algorithm efficiently computes the pairing of two points of order n in O(log n) operations [15].

The following table shows the required operations to execute each step of the proposed

protocol. We omit the field operations and also the addition of points on an elliptic curve due

to their negligible complexity compared to other operations. The required operations consist

of scalar Multiplication (M), Pairing (P), Hashing (H), Isogeny (I) and its Evaluation (E)

computations.

Table 1. Operation costs for our protocol

Algorithm M H I P E

Setup 0 0 1 0 1

Partial-Private-Key 0 1 0 0 1

Set-User-Key 0 0 0 0 0

Set-Private-Key 2 1 1 0 1

Prover 2 0 1 1 2

Verifier 0 0 0 3 0

One can use the following parameter selection to have a more efficient setting. Assume that

KGC selects a finite field Fq where q = p2k and a supersingular elliptic curve E1 over Fq. Then

by [21] we have:

E1(Fq) ∼= Z/(pk + (−1)k+1)Z× Z/(pk + (−1)k+1)Z.

Let P1 and P2 be two generators of E1 with orders n1 and n2 respectively. KGC selects a point

G ∈ E1 of prime order ℓ and computes an isogeny ϕ : E1 → E2 = E1/⟨G⟩. Now by setting

PKGC = ℓP1 and P = ℓ′ϕ(PKGC), where ℓ
′ is the inverse of ℓ in Z/n1Z, we have

ϕ̂(P ) = ℓ′ϕ̂(ϕ(P )) = ℓ′ℓPKGC = PKGC .

Finally, we can choose H : {0, 1}∗ → Zn2 and set QID = H(ID)P2 to avoid trivial pairing

evaluations.

Besides some pairing problems, the security of our protocol is based on the hardness of

isogeny problem:

Isogeny Problem: Let E1 and E2 be two isogenous elliptic curves. Find an isogeny ϕ :

E1 −→ E2.
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There have been many efforts to attack the isogeny problem in the literature. In 2013, Gal-

braith and Stolbunov introduced an algorithm which solves the isogeny problem for ordinary

curves over finite field Fq in Õ(q1/4), where Õ denotes the complexity with the logarithmic fac-

tors omitted [10]. For supersingular elliptic curves, one can use Delfs and Galbraith’s classical

algorithm which solves the isogeny problem in Õ(p1/2) operations, where p is the characteristic

of the base field [7].

In quantum computing, there exists a subexponential quantum algorithm that breaks the

isogeny problem for ordinary elliptic curves using the commutativity of the endomorphism

rings of these curves. In contrast, supersingular curves are secure against this attack due to

the non-commutative property of their corresponding endomorphism ring. As the best-known

quantum algorithm for attacking to supersingular elliptic curves is proposed by Biasse et al.

[3] which solves the isogeny problem with exponential running time Õ(p1/4), supersingular

elliptic curves seem to be promising candidates for post-quantum cryptography.

Finally, we consider reset attack in which the cheating verifier can reset the internal state

of the prover to obtain some secret information.

Lemma 5.1. In our proposed scheme, if the prover P uses the same commitment S within

two subsequent conversations in the identification step, then the verifier V can have access to

a part of the user’s secret information.

Proof. Suppose that prover P chooses the same R in two different conversation with the verifier

V . Suppose also that the cheater verifier V intentionally sends the challenges d and d + 1 to

P and receives two corresponding responses Y1 and Y2. Then the cheater verifier obtains the

user’s secret value Usk = Y2 − Y1.

Therefore, according to the protocol, it is sufficient that the prover P selects R randomly

in commitment stage to prevent this attack.

6. EXAMPLE

In this section, we present an example of the implementation of the scheme for a 180-bit

finite field. This example is executed by the SAGE software [16, 17]. The example goes as

follows:

Setup

p = 4900152601274334517835467129341032968169,

Fq =
Fp[a]

⟨a2+a+1⟩ ,

E1 : y
2 = x3 + 1 over Fq,
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P1 = (P1,x, P1,y),

P1,x = 493486036157905657964275161469431052712a+ 4373798459541278086528298420579973616663

P1,y = 1285585884598696151376065867691109571658a+ 2392740759296656698266437734244539533444.

P2 = (P2,x, P2,y),

P2,x = 127545497348463939370225975223280635163a+ 2880970568367509996627679914344958289175

P2,y = 452307022754806384688018960174800910223a+ 632568880073957301817719655232813442491.

n1 = n2 = 4900152601274334517835467129341032968170.

G = (gx, gy) ∈ E1,

gx = 854591181731127739301549187799466641941a+ 1153221615853153278567303313331501394897

gy = 3614536690630890542841691880674035621157a+ 1461345737737856256122950479958115040911.

ϕ : E1 → E2 : y
2 = x3 + a2x+ b2 is an 1051-isogeny, where

a2 = 4246926852929394899943497901154830946794a+ 190861307645692472558027716577933889037,

b2 = 2705232255598076876350514775683762446800a+ 654698232157818573411983755940105291210.

PKGC = (PKGC,x, PKGC,y) ∈ E1

PKGC,x = 1597150371384737957075228145436152164013a+ 3901015952850292137453702860614393037116,

PKGC,y = 2368147936020029785109966438569409460906a+ 2219176816233816956493453070298402130467.

ℓ′ = 2297914855644803218753895726147862511

P = (Px, Py) ∈ E2,

Px = 4130292324331954200655561067256104659642a+ 2123841738422271143403710961257339000495,

Py = 998388088414387418757308767346129402061a+ 196372635102763278661828725357754406600.

mpk = {q, E1, E2,H, PKGC , P} where msk = G and H : {0, 1}∗ −→ Zn2

Partial-Private-Key-Extract(mpk, msk, ID)

H(ID) =133197711706781
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QID = (Qx, Qy) ∈ E1,

Qx = 3566364112342096442090905475774979221942a+ 289683054952680123049989013873998451346,

Qy = 3391794803386848619367955081976425737328a+ 77529223403769199567461890330363672426.

m = n = 4662371647263876800985220865215064670.

SID = (SID,x, SID,y),

SID,x = 211328026039888184700793145821135695572a+ 285612613317870690896072275139974920556,

SID,y = 4165226173188662842347654831626992977848a+ 2351679607595574357610496663827288331419.

Set-User-Key

b = 4174012217783237959700287256235510 ∈ Zq.

Set-Private-Key (mpk, ppk, sID, Upk, ID)

e2(P, SID) = e1(PKGC , QID) = c1,

c1 = 2372051764185045911220485777337140694428a+ 4733548749091385583154481825319480880561

P ′ = (P ′
x, P

′
y) ∈ E3,

P ′
x = 1597740806793618277637357860735923272270a+ 4738038078005762857015198533603436524063,

P ′y = 1471904565836523043227387991829910482311a+ 2940248891132179376123153942184109654979.

Usk = (Usk,x, Usk,y),

Uskx = 549916653312812546336599585968656432533a+ 2030468415630326440235222607956981807122,

Usky = 1944055089800631088242067743950724681779a+ 1857940926938363641344164002007396161801.

The 1117-isogeny ψ : E2 → E3 = y2 = x3 + a3x+ b3,

a3 = 4246926852929394899943497901154830946794a+ 190861307645692472558027716577933889037,

b3 = 2705232255598076876350514775683762446800a+ 654698232157818573411983755940105291210.

Upk = (Upk,x, Upk,y),

Upk,x = 1739881904542248556720198001900515879889a+ 4718604347716681364814834944592408691010,

Upk,y = 266127144196171297660121821245669747211a+ 1496247517994492146615338152293512326533.
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Identification-Protocol:

Prover (mpk, ID,Usk) and Verifier (mpk, ID,Upk, PKGC)

Prover:

R = (Rx, Ry) ∈ E3,

Rx = 4682625353962349351771925291324824675423a+ 1040487951970125303681516692507956622982,

Ry = 1651640783627190101490986862831252916828a+ 3427642067119352812659989959395086446774.

S = (Sx, Sy),

Sx = 4502784510736953775477928988945613408570a+ 193767173718127073479939867303661350578,

Sy = 2597334182891694451716009331909187800483a+ 591711528527138120018733168402330021810.

Verifier:

d = 15747947806697752759 ∈ Fq.

Prover:

Y = (Yx, Yy) and W ,

Yx = 4820762403689799810286462108836034556394a+ 1040850060828980507887459918382624698275,

Yy = 1106869388565458783787253901774790060375a+ 4247602005939820560273944625817138134550,

W = 1076749330818894299054800312482481289687a+ 2347798901994967353865093109510545309667.

Verifier:

e2(P, Y ) = e3(Upk, S)e1(PKGC , QID)
d = c2,

c2 = 4347231376226473047864170783550883335023a+ 3532987354122379343126022866043410543965.
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