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CONSTACYCLIC CODES OF ARBITRARY LENGTH OVER
Fy+uF,+- - +u“'F,

MARZIYEH BEYGI, SHOHREH NAMAZI* AND HABIB SHARIF

ABSTRACT. In this article, we shall study the structure of (a + bu)—constacyclic codes of
arbitrary length over the ring R = F, +uF, + --- +u®*" ' F,, where u® = 0, q is a power of a
prime number p and a, b are non-zero elements of F,. Also we shall find a minimal spanning
set for these codes. For a constacyclic code C' we shall determine its minimum Hamming

distance with some properties of T'or(C) as an a—constacyclic code over Fj.

1. INTRODUCTION

Constacyclic codes are some generalizations of cyclic codes. These codes are important in
theory of error-correcting codes and have practical applications as they can be encoded with
shift register.

The class of constacyclic codes over finite fields have been studied [, 2]. Recently, the
structures of constacyclic codes whose lengths are powers of a prime p have been studied over

Fym 4+ uFym, where u?> = 0, by Dinh [8]. Also, Jitman and Udomkavanich, in [6], determined
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the structure of constacyclic codes of lengths p* over Fx +uF,x+- - ‘+Um_1Fpk, where u™ = 0.
Fplu]
<u™m>"

In [7], Kai, Zhu and Li specify the structure of (1 + Au)— Constacyclic codes over
Let F, be a finite field with ¢ = p” elements and p a prime number. Consider the ring
R=F,+uF,+---+u‘'F, where u® = 0. In fact, R is a finite chain ring with ¢¢ elements
and with the maximal ideal < u >. A code C of length n over R is a subset of R". We say
that the code is linear, if C' is an R—submodule of R™. For a given unit A € R, a code C is
said to be A—constacyclic, if (A¢,—1,co,...,cn—2) € C, for (co,c1,...,cn_1) € C.
In R", any n—array (cg,c1,...,Cn—1) corresponds to a polynomial with degree less than

n, say Z?;ol c;x'. With this corresponding, any A—constacyclic code of length n over R is

R[]
<z —A>"

identified with an ideal of the quotient ring

In this paper, we are concerned with the A—constacyclic codes of arbitrary length n over
R=F,+ulFy+--- +ue_1Fq, where u® = 0 and A = a + bu for some a,b € F;. We completely
determine the structure of constacyclic codes of length n over R as the ideals of the principal

ideal ring % Also, we shall find a minimal spanning set for these codes. Finally,
Fylz]

<z"—a> and

for an (a 4 bu)—constacyclic code C over R we introduce Tor(C'), as an ideal of
we shall show that dy(C) = dy(Tor(C)).

From now on, we suppose that n = p*m, where ged(p, m) = 1, unless stated otherwise. Let
Rlz]

a, b be non-zero elements in F,, and & = S (kb

2. Some characterizations of (a + bu)—constacyclic codes

First, note that every polynomial k(x) in R[x] can be uniquely written as k(z) = ko(z) +
uky(z) 4+ -+ u¢ k1 (x), where k;(z) € Fyfz], 0 <i<e— 1.

We have the following lemma whose proof is straightforward.

Lemma 2.1. For any i, 0 < i < e — 1, let ki(z) be polynomials of degree less than n in
F,[x]. Suppose that ko(z) + uki(z) + -+ uLke_1(x) =0 in S. Then ko(z) = ki(z) = ... =
ke—1(xz) =0 in Fylz].

Corollary 2.2. Every polynomial k(x) in S can be uniquely written as k(z) = ko(z)+uk1(z)+
st ufT ke (x), where ki(z) € Fylz], 0<i<e—1, and deg k; < n.

Fy[z]

Consider the ring Te = ih—aSe-

Since Fy[z] is a principal ideal domain, every ideal of T¢ is
principal. Hence T, is a principal ideal ring. By the division algorithm in Fj[z], every element
k(x) € T, with deg k < en can be uniquely written as
k(x) = ko(x) + k1(2) (2" — a) + -+ - + ke—1(z) (2" — a)* 1,
where deg ki <n (0<i<e-—1).
In the ring S we have v = b~ !(2" — a). Now, applying Corollary P2, there exists an
isomorphism 1 from S onto T, which maps u to b=!(2™ — a). In fact, we have the following

proposition.
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Proposition 2.3. Let ¢ : § — T, be defined by
(5 u'ki(w)) = 252 b (@ — a)'ki(x),
where ki(x) € Fylz], for any i, 0 <i < e—1 and deg k; < n. Then ¢ is a ring isomorphism

as well as an Fy[x]|—homomorphism.

Proof. Obviously, ¢ is an additive homomorphism. Assume that k(z) = Y ;_ & u'k;(x) and

I(z) = 3574 w'li(z) are two elements of S, where k;(z),1;(x) € Fy[z], deg k; < n and deg l; < n,

0<i<e—1. Now,

e—1 %

Ka)l(z) = Y u'(Y ky(a)lij(x)
1=0 7=0
e—1 1

i=0 j=0
Assume that for any i, 0 < i < e — 1, hi(z) € F,[z] is coefficient of u’. we can see that
deg hi <2n — 2. In F,[x], there exist ¢;(z) and s;(z) such that h;(z) = (2" — a)gi(z) + si(x),

where deg s; < n and deg ¢; <n —2. Soin S, h;(x) = bug;(x) + s;(x). Hence

k(z)l(z) = Zu (bugi(x) + si(z))

Thus
P(k(x)l(2)) = so(x) + 2=y b7 (@ — a)i(bgi—1(z) + si())
Also,
e—1 1
Ylk@)p() = DD 07" - a)ky(@)li (@)
i=0 j=0
e—1

e—1
= so(z)+ Z b (2™ — a)'(bgi_1(z) + si(z)).
i=1

Therefore ¢ (k(x)l(x)) = ¥ (k(x))y¥(l(x)). This show that ¢ is a ring homomorphism.
Suppose that k(z) € Te and deg k < en. By the division algorithm in Fj[z],
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k(z) = ko(x) + ki(x) (2™ —a) + - + ke—1(x) (2™ — a)e_l,

where deg ki <n (0<i<e—1). We can see that w(zg& biu'k;(x)) = k(z). Hence ¢ is an
epimorphism. The rest of the proof is straightforward.

Remark 2.4. i) Since T, is a principal ideal ring, S is too. We shall now determine the unique
form of a generator of an ideal of S.

i1) Note that, here b # 0. The reader should be careful that the ideals of S are different from
Rlz]

the ideals of the ring —7=

(this ring is not a principal ideal ring).

Let a = ags, where ag € F; ( note that a has a unique p*-th root in Fy). Thus (2" —a) =
(z™ — ag)?". Assume that 2™ — a9 = fifa...fy, where f;, 1 < i < p, are distinct monic
irreducible polynomials in Fj[z]. Hence (z" — a) = [[_, f". Every ideal of T, has a monic
generator of the form [[7 , /i, 0 < a; < ep® and a result of the following lemma is the

uniqueness of this generator.

Lemma 2.5. Let C =< [[_, f% > and D =< [[/_, f* > be two ideals of T., where
0 < oy, <ep’. If C C D, then B; < a; for any i, 1 < i < 1 and in fact, in Fylx],
Ly f T, £

Proof. Since C' C D, there exist polynomials k(z) and h(z) in Fy[z] such that
L F7 =TT £ k() + (@7 = a)h(w), in Fyfa]
Since 0 < 8; < ep®, [ ffi | (z" — a)® and hence [, ffi | TTZ, /i in Fy[z]. Thus for any

For the rest of this paper, all notations ¥, S, T, and f; (1 < i < n) are fixed as defined

above.

Proposition 2.6. Let C' be an (a + bu)—-constacyclic code of length n = mp® over R. Then
as an ideal of S, C has a unique generator of the form [[}_, [, where 0 < a; < ep® and f;

are distinct monic irreducible divisors of ™ — ag in Fy[z].

Proof. Since C' 48, ¥(C) <T, (by Proposition 23). Hence by Lemma P73, 1)(C) has a unique

generator of the form []_, f*, where 0 < a; < ep®. Since ¥(f;) = fi, we are done.

Remark 2.7. (i) Showing the uniqueness of the generators of constacyclic codes is open to
doubt, (see, for example [[@], Theotems 4.3, 4.5 and Corollary 4.7). Dinh et. al. [4] and also
Guenda et. al. [H] seem to have used the uniqueness of the generators of constacyclic codes,

implicitely, to calculate their numbers, although they have not pointed to it.
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(74) The authors of [4] and [5] have calculated | C |, where C is a constacyclic code, which
seems not to be very accurate (for example, when the power of the distinct monic irreducible
divisors of ™ — ag are greater than p®, the equality does not hold). We shall find the exact

number | C' |, in the following corollary.

Corollary 2.8. (i) Let C =< [[]_, f > and D =< [[]_, ffi > be ideals of S, where
0<a;,pB <ep®. If C C D, then for any i, 1 <i <, B < a, that is, in Fylz], []]_, ffZ ]
npay
i=0 fi -
(ii) The number of (a + bu)— constacyclic codes of length n = mp® over R is (ep® + 1)".
(¢ii) If C =< [T, [ > is an (a+bu)—constacyclic code over R, then | C' |= genXiny cudeg fi

Proof. (i) Soppose that C' C D. Thus with the previous notations, ¥(C) C (D). Since
Y(fi) = fi, the result follows by Lemma P73.

(74) By the uniqueness of generators of these codes, the proof is straightforward.
(#4i) Since | C |=| ¥(C) | and (C) is an ideal of T,, | C |= ¢~ 2= @ideg fi

Lemma 2.9. Let C =< T[], f > be an ideal of S, 0 < a; < ep®. Then for a non-negative
integer 1, < ul >C C if and only if for any i, 1 <i<n, 0 < oy < Ip®.

Proof. < u! >C C if and only if ¢(< u! >) C ¢(C) if and only if < 2" —a >!/C< I, £ >
if and only if < [T, fl-lps >C<[IL, ff* > if and only if 0 < o < Ip® for any i, 1 < i < (
by Lemma E3).

Let C =< [, " > be an (a + bu)—constacyclic code over R, where 0 < «a; < ep®.
Assume that there exists k, 0 < k < e — 1 such that kp® < a; < (k+ 1)p°, for i, 1 <i <.
Let a; = kp® + 5;, 0 < B; < p®. Then

n

n n
105 = AL
=1 =1

i=1

U
= @ o[
=1

U
= Yt A
i=1
Obviously, g(z) =[], ffi divides 2" — a in F,[z] and C =< uFg(z) >.

In order to give a characterization of the generators of an (a + bu)—constacyclic code, we

n Qg

construct the following polynomials g;(x) € Fylz]. Suppose that f(z) = [[;_, f;*, where

0 <o <ep®, 1 <i¢ < n. Changing the indices so that for the non-negative integers 0 =
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S0 <81 <. < Se =1 0< aq, 02, .., 0 Sps < Qgy ey Qs < 2p8 <...< (eil)ps <
sy 141, - -+, s, < ep®. Suppose that

Qs +5; = ps + ﬁsl-‘y—jlu 0< ﬁs1+j1 < ps

Asy+jo = 2p5 + /Bsz—l—jz’ 0< 682+j2 < ps

a8571+j€71 = (e - 1)p5 + ﬁsefl""jefl’ O < /388714_.7‘671 S ps'

We have
n
go(z) = ged(f(z),a" —a) = (f .. fo)C ] )
i=s1+1

_ M Bt Bso 2 p°
gi(z) = gcd(go y90(@) = (fhn - fe?)( 1T ™

_ c f(x) ) = Bse_og+1 Bse_1 il ps
%o2lw) = g d(go(l‘)gl(x) ge—s(a:)’ge_3( )= (e - Sl )(i:s!_llﬂfz )
f(x)

Bs,_
goi(z) = ged( JGea(®)) = (F, T £,

90()91(7) . . . ge—2(7)
(If s; = s;41, we have gj(z) = H?:sﬁl ffs.) We can see that ge—1(z) | -+ | g1(2) | go(z) | 2" —a
in F,[z] and TT7_, f* = 124 gi(z). Therefore, we have the following form of the generators

of an (a + bu)—constacyclic code over R.

Proposition 2.10. Let C be an (a + bu)—constacyclic code over R. Then C =<
9091 - - - ge—1 >, where g; are monic polynomials in Fylx] such that ge—1(x) | --- | g1(x) |

go(x) | 2™ —a. Also | C |= g XS0t where deg g; = t;.

Note. From now on, for an (a + bu)—constacyclic code C, the related polynomials

go(x), q1(z), ..., ge—1(x) with deg g; = t;, 0 <i < e— 1, are fixed.

Lemma 2.11. Let C =< ¢ogi - .. ge—1 > be an (a + bu)— constacyclic code over R and l be a
non-negative integer less than e. Then < u! >C C if and only if gy = giy1 = -+ = ge—1 = 1.

Proof. By Lemma P9, < u! >C C if and only if C =< []_, f* >, where 0 < a; < Ip°. The

rest of the proof is similar to the disscussion preceding Proposition E10.

Lemma 2.12. Let C =< ¢pg1 - .. ge—1 > be an (a + bu)—constacyclic code over R. If f(x) €
F,[z] is a polynomial of the lowest degree such that u¢~!f(z) € C, then f(z) = ge—1.
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Proof. First note that gog1...ge—1 | ge—1(2™ — a)®~'. Thus u®"'g._; € C. By the division
algorithm in Fj[z],

ge—1(x) = f(x)g(x) + s(x), where deg s < deg f.
Since u¢'ge_1(z) and u~!f(x) are in C, u¢'s(z) € C. Hence s(x) = 0. Thus g._1(z) =
f(z)g(x). Since u¢~lf(x) € C, (2" — a) ' f(z) € ¥(C), where v is the isomorphism in
Proposition Z3. So there exists h(x) € T,, where deg h < en — Zf;é t;, such that (z" —
a) L f(x) = gogi - .- ge—1h(x). Since the degree of two sides of the above equality is lower than

n

— a)e_l = 9091 - - - ge—29(x)h(z). Let
D =< gogi ...Ge—2g > <S. Then u¢~! = (z™ — a)e_1 € D and g(z) | ge—2(x) | -+ | g1(x) |
go(x) | 2™ — a. By Lemma 211 for D, g(x) = 1. Hence f(z) = ge—1.

en, we can consider this equality in Fy[z]. Hence (x

Proposition 2.13. Let C =< gog1 ... ge—1 > be an (a + bu)—constacyclic code over R. Then

u¢Lgo_1 has the lowest degree between all non-zero elements of C.

Proof. Assume that d(z) € C has the lowest degree between all non-zero elements of C. Let
d(z) = Zf;& di(x)u’, where d;(z) € Fy[z] and deg d; < n, 0 < i < e — 1. There exists
the smallest non-negative integer j, 0 < j < e — 1, such that deg d; = deg d. For any [,
0<1<j—1,degd < degd. Now, u"ldy(z) = u*"'d(x) € C. Since d(z) has the lowest
degree in C' and deg dy = deg u®~'dy < deg d, u* do(z) = 0 and so do(x) = 0. Also
u¢ldy(x) = u®~2d(x) € C. Since d(z) has the lowest degree in C' and deg dy = deg u¢~'d; <
deg d, di(x) = 0. Similarly, do(z) = ... = dj_1(x) = 0. Now u®"1d;(x) = u*~17d(z) € C.
Since deg u¢~'d; = deg d; = deg d, u¢~'d;(z) has the lowest degree in C. So by Lemma 212,

e—1

dj(z) = ge—1(z). Hence deg d = deg d; = deg ge—1 = deg u¢"1ge_1. Therefore, u"1g._1 has

the lowest degree between all non-zero elements of C.

3. The minimal spanning set of constacyclic codes

In this section we shall determine the minimal spanning set for an (a + bu)—constacyclic
code over R. Let us define the following notations. If h;(x), —1 < j < r, are polynomials in

F,[x] such that deg h; = t; and
(1) he(@) [+ [ ho(2) | hoi(2),

then we assign the underling set {f(z),zf(z),...,z!=17t0~1f(x) | f = [Ii_o h:i} for the prop-
erty (0). If ¢_1 = tg, then the empty set @ will be assigned to be the underlying set.

First we provide the minimal spanning set for two special cases.

In the following proposition, we determine the minimal spanning set for all constacyclic
codes over R = F, 4+ uF,, where u? = 0. To do so, we need the following lemma whose proof

is straightforward.
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Lemma 3.1. Let R = F, + uF,, where u> = 0 and g(x) be a divisor of 2" — a in Fy[z]. If
g(x)k(z) = 0 for some k(x) € S, then there exists h(z) € Fy[z] such that deg h < n —1 and
k(x) = uh(x).

Proposition 3.2. Let C =< gogi > be an (a+bu)—constacyclic code over R = Fy+uFy, where
u? =0 and deg g; = t;, i = 0,1. Suppose that Ay is the underlying set for g1(x) | go(x) | 2" —a
and Ay is the underlying set for gi(x) | go(z). Then

A = AgUudr = {gog1, 29091, - - -, 2" gog1 } U{ugr, zugr, . .., 20" " lug }

is a minimal spanning set for C as an R-module.

Proof. First, we show that A= ApJuAgJuA; is a linearly independent set over Fy. Suppose
that

n—to—1 to—t1—1
(2) Z (k‘z + ukg)xlgggl + Z djl‘Jugl =0,
i=0 =0

where k;, ki and dj are in Fy, 0 < i < n—1t—1, 0 < j < tp—t; — 1. Let k(z) =
S ket B(z) = Sl Bt and d(z) = Z;OZ_Otl_l djx’. We show that k(z), k'(z)
and d(z) are zero. In S, g1(z)[k(x)go(z) + uk/(z)go(x) + ud(x)] = 0. Hence by Lemma B,
k(z)go(z) + uk'(x)go(x) + ud(z) = uh(z), where h(z) € Fylz] and deg h < n. Since in the
above equation the degree of all polynomials are lower than n, we can consider that equation
in R[x]. So k' (z)go(z) + d(z) = h(z) and k(x)go(xz) = 0 (in F,[x] ). Since go(x) # 0, k(z) = 0.
Therefore, by (2),

(3) uk'(x)go(x)g1(x) + ud(x)g1(z) =0,

in §. Now, in Fy[z] , K'(z)go(x)g1(z) = (2™ — a)s(x) + ¢q(x), where deg ¢ < n — 1 and
deg s <t; — 1. Also go(z) | g(x). Assume that q(z) = go(z)q (), deg ¢ < n —ty — 1. Hence
in S, k' (x)go(x)g1(x) = bus(x) + go(z)¢ (x). Now using (B), uge(z)q'(z) + ud(z)g1(x) = 0. So
go(x)¢'(z) + d(z)g1(z) = 0 (by Lemma E71). Hence go(x) | d(x)g1(z). Since deg dg1 < deg go,
d(x) = 0. So ¢'(x) = 0. Therefore, k'(x)go(z)g1(x) = bus(x). Hence us(x) € C. Since by
Proposition I3, ug; (z) has the lowest degree in C, s(z) = 0. Thus k'(x)go(x)g1(z) = 0 in
F,[z]. Hence k'(xz) = 0. Now, | A |=2n — to — t1 is equal to the dimension of C' as a vector
space over Fy (by Corollary 28, part (7it)). So A is an spanning set for C' as an F,—module.
Hence A generate C as an R—module. Also since A is linearly independent, A is a minimal

spanning set for C.

In the following lemma, we determine the minimal spanning set for the constacyclic code

C =< uFg(x) > over R = F;+uF,+---+u®"'F,, where u® = 0 and g() € F,[z] is a divisor
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of 2" —a (see the discussion after Lemma 29). This lemma is used in the proof of Proposition
3.

Lemma 3.3. Let C =< uFg(x) > be an (a-+bu)— constacyclic code over R, where g(x) | 2" —a,
0<k<e—1anddeg g=t. Suppose that By is the underlying set for 1| g(z) | ™ —a and By
is the underlying set for 1| g(z), if0 < k < e—2 and @, ifk = e—1. Then Q = u*By | Ju* 1B,

is a minimal spanning set for C' as an R-module. Also, | C |= gle—kn—t,

Proof. First, we show that Q is a spanning set. Let c¢(x) € C. Thus ¢(z) = u*g(z)i(x) for
some [(z) € S. If deg | <n —t— 1, then we are done. Suppose that deg | > n —t. In R]x],

l(z) = (xgn(;)a)q(x) + s(x), where deg s <n—t—1and deg ¢ <t — 1.

Now in S,

—a

c(z) = utg(a)(( Ja(x) + s(x))
= uq(z)(a" — a) + uPg(2)s(x)
buFtlg(x) + uFg(x)s(z).

(Note that if k = e — 1, then buf*1g(z) = 0.) Hence

Q = {uFg,zuFg,... o " lubg uk T oyttt gt R
is a spanning set for C if 0 < k < e —2. Alsoif kK =e — 1, then
QO = {ue—lg’ xue—lg’ o ’xn—t—lue—lg}

is a spanning set for C'. We claim that €2 is a minimal spanning set. For, it is enough to show
that
ST N ) atukg + YL (G dypd Yo b = 0,
implies that all coefficients [;; and dj; are zero in Fq[ |. Consider polynomials [;(z) =
Yo Ot 1lﬂx and dj (x) = Zﬁ/_:lodiji/, where 0 < j<e—k—1and0<j <e—k—2. Thus
in§,
(b il ()b g () + (S5 u' dy (2)uh 1 = 0.
Since the degree of all polynomials in the above equality is lower than n, by applying Lemma
P, we have,
lo(z)g(x) =0 and lj(z)g(x) + dj—1(x) =0,in Fylz], 1 <j<e—k—1.
Since g(z) # 0, lop(z) = 0. Also deg (ljg) > deg d;_; implies that [j(z) = d;—i(z) = 0.
To prove the last statement of the lemma, note that (C) =< (2" — a)*g(z) > and
| $(C) |= ¢t Hence | C |= gle=Hn—t,

For every positive integer j, set T; = % If i < j, then clearly T; is a homomorphic
image of T;. Consider the natural ring epimorphism mj; : T; — T; with kerm;; = %

Note that for polynomials hi(z) and ha(z) in Fylz], if hi(z) = ha(z) (mod (z" — a)’), then
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mji(h1(z)) = 7ji(ha(z)) (mod (2™ — a)?). Obviously, every h(z) € T} has a unique representa-
tion h(z) = {:_01 hi(z)(z" — a)!, where hy(z) € Fy[z] and deg h) < n for any [, 0 <1< j —1.
Thus we have

j—1

mi(h(z)) = mi(Y_ (@) (@" —a))

=0

= Zhl (" —a

For j > 2, consider the finite chain ring R; = Fj+u;Fy+-- -+u§_1Fq7 where ug = 0 and the
Rja]
<z"—(a+bu;)>"

then S; is a homomorphic image of S;.

principal ideal rings S; = In the following proposition, we show that if i < j,

Proposition 3.4. Let i and j be two integers such that 1 < ¢ < j. Then there exists an
epimorphism Bj; : S; — S; such that ﬁji(Z{;} () ) S hu(@)ul, where hy(z) € Fylz]
and deg hy <n for any l, 0 <1 < j—1. Also kerfj; is the ideal of S; generated by uj.

Proof. Similar to the proof of Proposition 233, consider v; : S; — T} by

Ui (X120 whki(x)) = Y12 b7 (@ = a)' k().

where kj(z) € Fylz], for any [, 0 <1 < j — 1 and deg k; < n. Now we set (3j; = wi_leiwj in
§, Uy T Y s,

We can see that 3j; is an epimorphism and kerf3;; = 1/Jj (kemrji). Hence kerfj; =< u; >.

Furthermore, 83;;(uj) = u;. Since mj;((z™ —a)t) = 0 for all [, | > 1,

51 {0 1>
T aoifl<i

(3

Every element of S; has a unique representation Zf;ol ué-hl(x), where hj(x) € Fylz], for any [,
0<1<j—1anddeg hy <n. Thus 5;‘1‘(2{:_8 hl(m)ué) = Z;;é hy(x)ub. g

Corollary 3.5. If1 <i < j, then —i— ~ ;.
J

Lemma 3.6. Suppose that 1 < i < j and h(x) is a polynomial in Fy[z] such that deg h < ni.
Then Bj;(h(x)) = h(z).

Proof. Since deg h < ni, there exist polynomials hj(z) € Fyz], 0 < [ < i — 1, of degree
less than n such that h(z) = /25 (2" — a)lhy(x). In S}, h(z) = Y)= 1blul-hl(:1:) and hence
Bji(h(x)) = h(z). o

Lemma 3.7. Let C =< [[]_; f"* > be an (a+bu)—constacyclic code over R;, where 0 < oy <
ps. Ifi < j and < u; >C C, then B5i(C) as an ideal of S; generated by [[]_; f;"
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Proof. Since < u; >C C, by Lemma 9, 0 < o5 < ip® for any [, 1 < [ < 7. Hence

deg (IT, ) < mi. So B;u(IT, i) =TI/ /', by Lemma B®B. Since C contains ker(;;,

aq

we can see that 3j;(C) is an ideal of S; generated by B;([T_, f{")- o

With the previous notations, let Rz = Fy + uFy + u2Fq and Ry = F, + vF,, where u? =0

and v?> = 0. Consider S5 = % and Sy = %ﬂbw.

Proposition 3.8. Let gi(x) | go(x) | 2" — a and deg g; = ti, i = 0,1, and let ko(x), k1 (z) €
Fylz], deg ko <n—to—1 and deg ki < to—t1 — 1. If in S,

u?ko(x)gogr + u?ki(z)g1 = 0,
then ko(z) = ki(z) = 0 in Fy[z].

Proof. If go(z) = z™ — a, then the result holds by Lemma 270. Let go(z) # 2" — a and
C' =< gog1 > be the (a + bu)—constacyclic code over Rs. Consider

n—to—1

Ay = {9091,z9001,.... T 9091},

Al = {gl7mglv"’7xt07tlilgl}a
Ay = {l,z,...,2"71}

We show that A = Ay |JuA; | Ju?As is a spanning set for C' as an R3—module. Clearly, every
element of A is in C'. Suppose that 8 = B30 : S3 — S5 is the epimorphism in Proposition
B4. Since deg (gog1) < 2n, by Lemma B, 3(C) is the ideal of Sy generated by gog1. By

Proposition B2, the set

n—to—1 to—t1—1

{9091, 29091, ..., = gog1} U{vgr, zvgr, ...,z vg1}
is a minimal spanning set for 3(C). Also by Lemma B3, the set {u? zu?, ... 2" 1u?} is a
minimal spanning set for ker =< u? >. Assume that c(x) € C. Hence

c(x) = Z?;Otofl rixtgogr + Z?!Otl*l sjzlugy + Z?;Ol dyztu?,
where r;,s;, € B3, 0<i<n—t—1,0<j<ty—ti—landd; € F;, 0 <] <n—1. Now, we
shall show that u?z”, t; <r <n — 1, are in the R3—module spanned by A. We have

w?r't = u?[gy(x) + I(z)] = u?g1(z) + w?l(x), where [(x) € Fy[x] and deg | < t;.
Thus w2z is in the R3—module spanned by A. Since uz’g; () € Aforanyi, 0 <i<tog—t;—1,
inductively, for i, 0 <i <tg—t; — 1, u?z" ™ = v2aig (x) + u?2%l(x) is generated by elements
of A.
Now, by the division algorithm, there exist k(x) € Fj[z] with deg k <ty and bg,bq,--- ,b; in
F, such that
wrztot = u?bjal go(x) + bj—127 go(x) + - - + bogo(z) + k()]

where 0 < j < n—to—1. We saw that u?k(z) is in the R3—module generated by A. It is enough
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to prove that u2x’gy(z), 0 < i < j, is generated by the elements of A. Clearly, uz’gg(z) € C.
Thus B(uz'go(z)) = vatge(z) € B(C). Hence there exist 7,85 € R3, 0 <i<mn—t—1and
0 <j <tg—t1 —1such that

uzigo(z) — (S0 rlatgogy + S0 shaugy) € kerf =< u? >.
Hence u?zigy(z) = Z?;(fofl urlzigogr + Z;O;Otrl sg-:zj u?g1. Therefore, A is a spanning set for
C. Consider A = U12:0 U?:l u/ A;. Since A is a spanning set for C' as an Rz—module, Ais a

3n—to—t1 ig equal to the dimension of C' as

spanning set for C' as an Fy;—module. Now | A |=q
a vector space, by Proposition EZ10. So Ais a linearly independent set over F,. Therefore,

the result holds.

Notation. Suppose that g;(x), i = 0,1, 2, are monic polynomials in F,[z] such that ga(z) |
g1(x) | go(z) | ™ — a and deg g; = t;. We set

”

Ap, the underlying set for "go(x) | gi(x) ]| go(x) | 2™ —a”,

”

Ay, the underlying set for "ga(z)|gi1(z) | go(x)” and

As, the underlying set for "go(x) | gi(x)”.

Proposition 3.9. Let C =< gpgi1g92 > be an (a + bu)—constacyclic code over Rs. Then

I'= U?:o ujAj is a minimal spanning set for C.

Proof. Suppose that deg g; = t;, 0 < i < 2. We shall show that T’ = Uzzzo U?:l WA is a
linearly independent subset of S3 over F,. Assume that in S3,

212:0 232‘:1 Z?Z’Oﬁtl*l 200 Hf:l gr =0, where t_; = n and z;; € F,.
In Fyz], set kjj = 2?:’01_“_1 z157'. Hence in S,
(koo () + ukor () + w’koa(x))gog1ga + (k11 () + ukiz())ugigs + kaa(x)u’gs = 0.

Thus there exist ho(z), hi(x) and ho(x) in Fj[z] such that

koo(x)gogige = (2" —a)ho(x)
ko1()gog1g2 + k11(z)g192 = (2" — a)hi(x) — bho(z)
koz2(x)gog192 + k12(x)g192 + kao(z)g2 = (2" — a)he(x) — bhy(z).

By the third equality, go(x) | hi(xz) and by the second equality, g1(z)g2(x) | ho(z). Hence
(" —a) | koo(x)go(x). Since deg koogo < m, koo(x) = ho(x) = 0. So ko1(x)gog192+k11(z)g192 =
(2™ — a)hi(x). Therefore, ko1(x)gog1 + k11 (x)g1 = (2" — a)hZ—(f). Now, in S3, u?ko1(x)gog1 +
u?k11(x)g1 = 0. By Proposition BR, koi(z) = k11(x) = 0. Hence hi(z) = 0. So in the third
equality, g1(z) | k22(x)ge(x). Since deg koage < deg g1, koo(xz) = 0. Hence ko2(x)gog192 +
ki2(x)g192 = (2" — a)ha(z). By the division algorithm in Fy[z],

ho(x) = g2(x)q(z) + s(x), where deg s < deg ga.
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So in S3, ukoa(x)gog1g2 +uki2(z)g1g2 = u?ga(x)q(x) +u?s(z). Thus u?s(x) € C. Since deg s <
deg g2, by Proposition 213, s(z) = 0. Hence ko2(x)gog192 + k12(z)g192 = (2" — a)g2(x)q(z).
So ko2(7)gog1 + ki2(x)g1 = (2™ — a)q(z). Now, in Sz, u?koz(x)gog1 + u?ki2(2)g1 = 0. By
Proposition B, ko (z) = kiz(z) = 0. Therefore, I is linearly independent over F,. Sol'is a
minimal set over R3. Since the number of elements of T is equal to the dimension of C, Tisa

basis for C' over Fy. Thus I' is a minimal spanning set for C' over R3. g

Now, we shall determine the minimal spanning set for an (a+ bu)—constacyclic code C over

R=F,+ulfy+---+ ueleq, where u¢ = 0.

Let g;, 0 < i < e — 1, be monic polynomials in Fj[x] such that ge—1 | ... | g1 | g0 | 2" — a.
According to (), suppose that Ay is the underlying set for "ge—1 | ... | g1 | go | 2" — a” and
each Aj, 1 < j < e —1 is the underlying set for "ge—1 | ... | gj | gj—1”. Then we prove the

following result.

Proposition 3.10. Let C =< gog1 ... ge—1 > be an (a + bu)—constacyclic code over R. Then
. e—1
= U;;é uw Aj is a minimal spanning set for C'" as an R—module. Also, | C |= qen_Zi:O b

where deg gj =t;, 0 <j<e—1.

Proof. For e = 2, we have Proposition BZ. Inductively, similar to the proof of Proposition B3,
for polynomials k;(x), 0 < j <i—2and 3 < i < e, we can prove that in S;, ko(z)gog1 - - . gi—2+
ki(z)gig1...g9i—2 + -+ + ki—2(z)gi—2 = 0 implies that ko(z) = ki(z) = ki—2(x) = 0 in F,lz],

and similar to the proof of Proposition B9, we are done.

4. The minimum Hamming distance of constacyclic codes

In this section, we shall determine the minimum distance of an (a + bu)—constacyclic code
over R. We correspond to any constacyclic code C' over R, an ideal Tor(C) of 17 with the

same minimum Hamming distance of C.

Lemma 4.1. Let hi(z) and hy(z) be two elements of Fyz]. Suppose that for some i, 0 <i <
e—1, u'hy(z) = u'he(x) (' mod (x™ — (a+bu))), in R[x]. Then hi(x) = ha(x) ( mod (2™ — a))
in Fylx].

Proof. In R|x],
u'(ha (@) — ha()) = (2" — (a + bu))(ko(2) + uki(2) + - +u ko1 (2)),
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where kj(x) € Fylz] (0 < j <e—1). Hence in Fy[z],

0 = (2" —a)ko(x)
0 = (2" —a)ki(z) — bko(x)

0 = (iUn — a)/ﬁ;l(l‘) — bkifg(x)
hi(x) — he(x) = (2" — a)ki(x) — bki—1(x).

By the first ¢ relations, we deduce that ko(x) = ki(z) = ... = ki—1(z) = 0. So hy(x) — ha(z) =
(™ — a)ki(x) for i, 0 < i <e—1. Hence hi(x) = hao(x) (mod (2" — a)) in Fylz]. o

Lemma 4.2. Let hi(z) and hao(x) be two elements of Fylx]. Then hi(z) = hao(x) ( mod
(z" — a)) in Fylz] if and only if u¢~*hy(z) = u¢Lhe(x) ( mod (2™ — (a + bu))) in R[z].

Proof. =) Assume that hi(x) = he(z) (mod (2" —a)) in F,[z]. Hence there exists k(z) € Fy[z]
such that hi(z) —ha(z) = (2" —a)k(z). Soin R[z], u® thy(z) —uthy(x) = u~ (2™ —a)k(z).
Since 2" —a = bu ( mod (2" — (a + bu))), u® thi(z) = u®the(z) ( mod (2" — (a + bu))).
<) The proof follows by Lemma 1.

Suppose that C'is an (a+ bu)—constacyclic code over R. Regarding Lemma B2, let Tor(C)
be the set of all polynomials h(z) in Ty such that u®~*h(x) € C. Clearly Tor(C) is an ideal
of Ty. Hence T'or(C) is generated by a unique monic divisor k(z) of 2 — a in Fy[z]. In fact,
Tor(C) is an a—constacyclic code over Fy. If we consider C' as an R-submodule of R", we can

write
TOT(C) = {h = (ho,hl, R ,hn_l) S F(;l | u*th e C}

Recall that the Hamming weight of v € R™, is defined to be the number of non-zero
components of v. We denote by dg(C), the minimum Hamming distance of a code C. We

shall show that dy(C) = dy(Tor(C)).
Lemma 4.3. Let C be an (a + bu)—constacyclic code over R. Then d(C) = dg(Tor(C)).

Proof. Since u* 'Tor(C) C C, dy(C) < dg(u'Tor(C)). Clearly dy(Tor(C)) =
dy(u¢~1Tor(C)). Therefore dgy(C) < dg(Tor(C)). Assume that

v = (3 o, Y5 g vt S0 v i)
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is a non-zero element of C, vj; € F;, 0 < j <n—1and 0 < ¢ < e— 1. Obviously, we
can write v = Zf;ol(vm,vu, <oy Un—14)u’. Suppose that [ is the lowest integer such that
w; = (vor, V1, - -, Un—1,) # 0. Hence w1y = w¢Iwy. Since vt v € O, u¢tw; € C. So
w; € Tor(C). Thus wty(w;) > dg(Tor(C)). Therefore,

wtg(v) > wtyg(us™ ) = wtg (u€ wy) = wtg(wy) > dg(Tor(C)).
This shows that dg(C) > dg(Tor(C)). o

Proposition 4.4. Let C' =< gog1 . ..ge—1 > be an (a + bu)—constacyclic code over R. Then
Tor(C) is the ideal of Ty generated by ge—1.

Proof. Assume that h(x) is the monic polynomial of the lowest degree in T'or(C). Thus h(zx)
is a generator of Tor(C) as an ideal of Ty. Since u¢~*h(x) € C, h(z) = ge—1(z) by Lemma
o2,

Example 4.5. Let R = F5 + uFy + u?F5, where u3 = 0 and S = @%m. In Flz],

o' —1 = fifafsfafs, where fi = x+1, fo = 2*+a+1, fs = at+a® +a?+a+1, fy =at+a2°+1
and f5 = 2* 4+ 2 + 1 are irreducible polynomials. Now, consider the (1 4 u)—constacyclic code

C =< fifaf} >. We can see that | C' |= 2! and with the notations of Proposition 210,

g0 = fifafs, g1 = fifs and g2 = f4. Since Tor(C) is an ideal of <£25["_E]1>, it is the cyclic

Hamming code generated by f4 over Fy. Therefore, dgy(C) = dy(Tor(C)) = 3.

With the previous notations, we see that dy(C) = dy(Tor(C)). Then we examine the
a—constacyclic codes over F,. Recall that, for a polynomial f(z) € F,[z], the number of

non-zero coefficients of f(z) in F[x] is called the weight of f(z) and is denoted by wt[f(x)].

Lemma 4.6. Suppose that n = mp® and k(z) = f(z)(x™" " —¢)t, where c € Fy, f(z) € Fylz]

and deg f < mp*~L. Ift <p—1, then wtlk(x)] = (t + 1).wt[f(x)] and deg k < n.

Proof. Suppose that wt[f(x)] = and f(z) = a;;2" + a;,x2 + - -+ + aijz®, where for any r,
1 <r <l a; #0. We have

(4) k(x) = Z(E)thj(ail$i1+jmps—1
—0

J

s—1

+ aizxinrjmp* o

4+t ailmizﬂ'mp‘ ).
Since for any r, 1 <r <1, 4, < deg f < mp*~1,

i+ Jmp* ™t <mp*Tt + jmp* Tt = (1+ j)mp*T! < mp® = n.
So deg k < n. Now, t <p — 1 implies that (}) is a non-zero element of F,;. Hence (E)Ct_j # 0.
Also, in the righthand side of (@) the powers of z are different. So wt[k(x)] = (t+ 1).wt[f(z)].

O



80 Alg. Struc. Appl. Vol. 6 No. 1 (2019) 65-82.

Assume that k(z) = f{" f52 ... fy", (0 < a; < p®) and a has an n—th root a; € F}'. Suppose
that r is a positive integer such that
i) Forany j, 1 <j<r aj=(p—1)p* 1 +dj and 0 < d; < p*1,
ii) For any j, r+1<j<n, a; < (p—1)p*L

Then we have the following proposition.

Proposition 4.7. By the above notations, consider the a—constacyclic code D =< k(x) >
<Ty. Then

di (D) < pwt[f{* 52 ... f&].

Proof. Let D # 0 and I(z) = 1d1 512 ... f%. We have deg | < mp*~!. Thus
5— m s—1 _ _ _
deg (I(x)(x™P - al” P <mpl+mptTip - 1) <mp® =n.
If h(z) = l(z)(z™" " — a{”pkl)p_l, then wt[h(x)] in F,[x] is equal to the weight of h(x) in 7.

Now,

s—1 s—1

hz) = lz)(@™  —a P!
= Uz)(fifa... fp) PP

_ s—1 o S— a o _ sfliar _ s—lia

= (IR gl s e (ple P e g DT ey

= k@) (g e D,

By Lemma B8, wt[h(z)] = p.wt[l(z)]. So dg(D) < pwt[l(x)]. g

Lemma 4.8. Suppose that D =< k(z) > is an a—constacyclic code over Fy, where k(x) |
" —a. If f(x) is a non-zero element of D, then there exists h(x) € Fy|x] with deg h < n—deg k
such that p(x) = h(zx)k(xz) (mod (™ — a)).

Proof. The proof is straightforward.

Proposition 4.9. [8, Theorem 6.3] For any polynomial p(x) over GF(p"), the Galois field of

order p", any non-zero element ¢ of GF(p"), and any non-negative integers n and N,
wt[p(z)(z™ — c)N] > wt[(z™ — ¢)N].wt[p(x) mod (" — c)].

O

Proposition 4.10. Let D =< k(z) > be an a—constacyclic code over Fy, where k(z) | 2" —a.
If ay is an n—th root of a in F, and i is the largest non-negative integer such that (x—a1)" | k(x)
, then

dp (D) > min{wt[(z — a1)"™7] |0 < j < n —deg k}.
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Proof. Assume that f(z) is a non-zero element of D. Thus there exists I(z) € Fj[z] with
deg | < n —deg k such that f(z) = l(x)k(z) (mod (2" — a)) by Lemma A8. Let j be the
largest non-negative integer such that (z —a1)’ | I[(z). Now the weight of f(z) in T} is equal
to wt[k(x)l(z)] in F,[z] and by Proposition B9, we have

wilk(x)l(z)] = wt[(z — m)”ﬂ'm]
> wt[(x — aQ”ﬂ.wt[MmOd(l‘ —ay)]
> wt[(z — ay)™].

So dy (D) > min{wt|[(z —a1)™] | 0 < j <n —deg k}. g

Example 4.11. Consider C =< u(z—1)? > as an (1+u)—constacyclic code over R = F3+uF3
(u? = 0) of length 6 (C' <4 —s2 1), We shall show that dj(C) = 2. Obviously, Tor(C) is
the cyclic code of length 6 over F3 generated by (z — 1)2. By Proposition 10, dy (Tor(C)) >
min{wt[(z —1)*] | 2 < a < 6}. So, dgy(C) = dg(Tor(C)) > 2. Also 23 — 1 is a codeword in

Tor(C) of weight 2. So the equality does hold.

Qn

Proposition 4.12. Suppose that ay € Fy is an n—th root of a. Let D =< f{" f3” ... f" >,
be an a—constacyclic code over Fy, where f1, fa,..., fy are the monic irreducible divisors of

™ — ag. If there exists t such thatt <p—1 and aj < tp*~! for any j, then dy(D) < t+ 1.

Proof. We have

s 1

@ — ™) = (@™ —a)P )
= ((f1f2 fa)P )t
— (fp tps ! ”ftpS*l)
= (SR e (T e g e gl ey ¢

s—1

wt[(zm™P* " — a’lnps_l)t] <t+1and deg (2" — ai” Y<n. Sody(D)<t+1. g
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