Journal of ALGEBRAIC STRUCTURES $\underset{\text { their }}{\text { tate }}$	Journal of Algebraic Structures and Their Applications ISSN: 2382-9761	(
	www.as.yazd.ac.ir	

Algebraic Structures and Their Applications Vol. 6 No. 1 (2019) pp 65-82.

CONSTACYCLIC CODES OF ARBITRARY LENGTH OVER $F_{q}+u F_{q}+\cdots+u^{e-1} F_{q}$

 MARZIYEH BEYGI, SHOHREH NAMAZI* AND HABIB SHARIFAbstract. In this article, we shall study the structure of $(a+b u)$-constacyclic codes of arbitrary length over the ring $R=F_{q}+u F_{q}+\cdots+u^{e-1} F_{q}$, where $u^{e}=0, q$ is a power of a prime number p and a, b are non-zero elements of F_{q}. Also we shall find a minimal spanning set for these codes. For a constacyclic code C we shall determine its minimum Hamming distance with some properties of $\operatorname{Tor}(C)$ as an a-constacyclic code over F_{q}.

1. Introduction

Constacyclic codes are some generalizations of cyclic codes. These codes are important in theory of error-correcting codes and have practical applications as they can be encoded with shift register.

The class of constacyclic codes over finite fields have been studied [[, [2]. Recently, the structures of constacyclic codes whose lengths are powers of a prime p have been studied over $F_{p^{m}}+u F_{p^{m}}$, where $u^{2}=0$, by Dinh [3]. Also, Jitman and Udomkavanich, in [6], determined

DOI: 10.29252/as.2019.1355
MSC(2010): Primary:94B05, 94A55, 94B15, 58F15, 58F17.
Keywords: Linear code, constacyclic code, minimal spanning set, minimum Hamming distance.
Received: 07 July 2018, Accepted: 15 April 2019.
*Corresponding author
the structure of constacyclic codes of lengths p^{s} over $F_{p^{k}}+u F_{p^{k}}+\cdots+u^{m-1} F_{p^{k}}$, where $u^{m}=0$. In [7], Kai, Zhu and Li specify the structure of $(1+\lambda u)-$ Constacyclic codes over $\frac{F_{p}[u]}{\left\langle u^{m}\right\rangle}$.

Let F_{q} be a finite field with $q=p^{r}$ elements and p a prime number. Consider the ring $R=F_{q}+u F_{q}+\cdots+u^{e-1} F_{q}$, where $u^{e}=0$. In fact, R is a finite chain ring with q^{e} elements and with the maximal ideal $\langle u\rangle$. A code C of length n over R is a subset of R^{n}. We say that the code is linear, if C is an R-submodule of R^{n}. For a given unit $\lambda \in R$, a code C is said to be λ-constacyclic, if $\left(\lambda c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$, for $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$.

In R^{n}, any n-array $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ corresponds to a polynomial with degree less than n, say $\sum_{i=0}^{n-1} c_{i} x^{i}$. With this corresponding, any λ-constacyclic code of length n over R is identified with an ideal of the quotient ring $\frac{R[x]}{\left\langle x^{n}-\lambda\right\rangle}$.

In this paper, we are concerned with the λ-constacyclic codes of arbitrary length n over $R=F_{q}+u F_{q}+\cdots+u^{e-1} F_{q}$, where $u^{e}=0$ and $\lambda=a+b u$ for some $a, b \in F_{q}^{*}$. We completely determine the structure of constacyclic codes of length n over R as the ideals of the principal ideal ring $\frac{R[x]}{\left\langle x^{n}-(a+b u)\right\rangle}$. Also, we shall find a minimal spanning set for these codes. Finally, for an $(a+b u)$-constacyclic code C over R we introduce $\operatorname{Tor}(C)$, as an ideal of $\frac{F_{q}[x]}{\left\langle x^{n}-a\right\rangle}$ and we shall show that $d_{H}(C)=d_{H}(\operatorname{Tor}(C))$.

From now on, we suppose that $n=p^{s} m$, where $\operatorname{gcd}(p, m)=1$, unless stated otherwise. Let a, b be non-zero elements in F_{q} and $\mathcal{S}=\frac{R[x]}{\left\langle x^{n}-(a+b u)\right\rangle}$.

2. Some characterizations of $(a+b u)$-constacyclic codes

First, note that every polynomial $k(x)$ in $R[x]$ can be uniquely written as $k(x)=k_{0}(x)+$ $u k_{1}(x)+\cdots+u^{e-1} k_{e-1}(x)$, where $k_{i}(x) \in F_{q}[x], 0 \leq i \leq e-1$.
We have the following lemma whose proof is straightforward.
Lemma 2.1. For any $i, 0 \leq i \leq e-1$, let $k_{i}(x)$ be polynomials of degree less than n in $F_{q}[x]$. Suppose that $k_{0}(x)+u k_{1}(x)+\cdots+u^{e-1} k_{e-1}(x)=0$ in \mathcal{S}. Then $k_{0}(x)=k_{1}(x)=\ldots=$ $k_{e-1}(x)=0$ in $F_{q}[x]$.

Corollary 2.2. Every polynomial $k(x)$ in \mathcal{S} can be uniquely written as $k(x)=k_{0}(x)+u k_{1}(x)+$ $\cdots+u^{e-1} k_{e-1}(x)$, where $k_{i}(x) \in F_{q}[x], 0 \leq i \leq e-1$, and deg $k_{i}<n$.

Consider the ring $T_{e}=\frac{F_{q}[x]}{\left\langle x^{n}-a\right\rangle^{e}}$. Since $F_{q}[x]$ is a principal ideal domain, every ideal of T_{e} is principal. Hence T_{e} is a principal ideal ring. By the division algorithm in $F_{q}[x]$, every element $k(x) \in T_{e}$ with deg $k<e n$ can be uniquely written as

$$
k(x)=k_{0}(x)+k_{1}(x)\left(x^{n}-a\right)+\cdots+k_{e-1}(x)\left(x^{n}-a\right)^{e-1},
$$

where $\operatorname{deg} k_{i}<n(0 \leq i \leq e-1)$.
In the ring \mathcal{S} we have $u=b^{-1}\left(x^{n}-a\right)$. Now, applying Corollary [2.2, there exists an isomorphism ψ from \mathcal{S} onto T_{e} which maps u to $b^{-1}\left(x^{n}-a\right)$. In fact, we have the following proposition.

Proposition 2.3. Let $\psi: \mathcal{S} \rightarrow T_{e}$ be defined by

$$
\psi\left(\sum_{i=0}^{e-1} u^{i} k_{i}(x)\right)=\sum_{i=0}^{e-1} b^{-i}\left(x^{n}-a\right)^{i} k_{i}(x),
$$

where $k_{i}(x) \in F_{q}[x]$, for any $i, 0 \leq i \leq e-1$ and deg $k_{i}<n$. Then ψ is a ring isomorphism as well as an $F_{q}[x]$-homomorphism.

Proof. Obviously, ψ is an additive homomorphism. Assume that $k(x)=\sum_{i=0}^{e-1} u^{i} k_{i}(x)$ and $l(x)=\sum_{i=0}^{e-1} u^{i} l_{i}(x)$ are two elements of \mathcal{S}, where $k_{i}(x), l_{i}(x) \in F_{q}[x]$, deg $k_{i}<n$ and deg $l_{i}<n$, $0 \leq i \leq e-1$. Now,

$$
\begin{aligned}
k(x) l(x) & =\sum_{i=0}^{e-1} u^{i}\left(\sum_{j=0}^{i} k_{j}(x) l_{i-j}(x)\right) \\
& =\sum_{i=0}^{e-1} \sum_{j=0}^{i} u^{i} k_{j}(x) l_{i-j}(x) .
\end{aligned}
$$

Assume that for any $i, 0 \leq i \leq e-1, h_{i}(x) \in F_{q}[x]$ is coefficient of u^{i}. we can see that deg $h_{i} \leq 2 n-2$. In $F_{q}[x]$, there exist $q_{i}(x)$ and $s_{i}(x)$ such that $h_{i}(x)=\left(x^{n}-a\right) q_{i}(x)+s_{i}(x)$, where $\operatorname{deg} s_{i}<n$ and $\operatorname{deg} q_{i}<n-2$. So in $\mathcal{S}, h_{i}(x)=b u q_{i}(x)+s_{i}(x)$. Hence

$$
\begin{aligned}
k(x) l(x) & =\sum_{i=0}^{e-1} u^{i}\left(b u q_{i}(x)+s_{i}(x)\right) \\
& =\sum_{i=0}^{e-1} b u^{i+1} q_{i}(x)+u^{i} s_{i}(x) \\
& =s_{0}(x)+\sum_{i=1}^{e-1} u^{i}\left(b q_{i-1}(x)+s_{i}(x)\right) .
\end{aligned}
$$

Thus

$$
\psi(k(x) l(x))=s_{0}(x)+\sum_{i=1}^{e-1} b^{-i}\left(x^{n}-a\right)^{i}\left(b q_{i-1}(x)+s_{i}(x)\right) .
$$

Also,

$$
\begin{aligned}
\psi(k(x)) \psi(l(x)) & =\sum_{i=0}^{e-1} \sum_{j=0}^{i} b^{-i}\left(x^{n}-a\right)^{i} k_{j}(x) l_{i-j}(x) \\
& =\sum_{i=0}^{e-1} b^{-i}\left(x^{n}-a\right)^{i}\left(\left(x^{n}-a\right) q_{i}(x)+s_{i}(x)\right) \\
& =\sum_{i=0}^{e-1} b^{-i}\left(x^{n}-a\right)^{i+1} q_{i}(x)+\left(x^{n}-a\right)^{i} s_{i}(x) \\
& =s_{0}(x)+\sum_{i=1}^{e-1} b^{-i}\left(x^{n}-a\right)^{i}\left(b q_{i-1}(x)+s_{i}(x)\right) .
\end{aligned}
$$

Therefore $\psi(k(x) l(x))=\psi(k(x)) \psi(l(x))$. This show that ψ is a ring homomorphism. Suppose that $k(x) \in T_{e}$ and deg $k<e n$. By the division algorithm in $F_{q}[x]$,

$$
k(x)=k_{0}(x)+k_{1}(x)\left(x^{n}-a\right)+\cdots+k_{e-1}(x)\left(x^{n}-a\right)^{e-1}
$$

where deg $k_{i}<n(0 \leq i \leq e-1)$. We can see that $\psi\left(\sum_{i=0}^{e-1} b^{i} u^{i} k_{i}(x)\right)=k(x)$. Hence ψ is an epimorphism. The rest of the proof is straightforward.

Remark 2.4. i) Since T_{e} is a principal ideal ring, \mathcal{S} is too. We shall now determine the unique form of a generator of an ideal of \mathcal{S}.
ii) Note that, here $b \neq 0$. The reader should be careful that the ideals of \mathcal{S} are different from the ideals of the ring $\frac{R[x]}{\left\langle x^{n}-a\right\rangle}$ (this ring is not a principal ideal ring).

Let $a=a_{0}^{p^{s}}$, where $a_{0} \in F_{q}^{*}\left(\right.$ note that a has a unique p^{s}-th root in $\left.F_{q}^{*}\right)$. Thus $\left(x^{n}-a\right)=$ $\left(x^{m}-a_{0}\right)^{p^{s}}$. Assume that $x^{m}-a_{0}=f_{1} f_{2} \ldots f_{\eta}$, where $f_{i}, 1 \leq i \leq \eta$, are distinct monic irreducible polynomials in $F_{q}[x]$. Hence $\left(x^{n}-a\right)=\prod_{i=1}^{\eta} f_{i}^{p^{s}}$. Every ideal of T_{e} has a monic generator of the form $\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}, 0 \leq \alpha_{i} \leq e p^{s}$ and a result of the following lemma is the uniqueness of this generator.

Lemma 2.5. Let $C=<\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}>$ and $D=<\prod_{i=1}^{\eta} f_{i}^{\beta_{i}}>$ be two ideals of T_{e}, where $0 \leq \alpha_{i}, \beta_{i} \leq e p^{s}$. If $C \subseteq D$, then $\beta_{i} \leq \alpha_{i}$ for any $i, 1 \leq i \leq \eta$ and in fact, in $F_{q}[x]$, $\prod_{i=1}^{\eta} f_{i}^{\beta_{i}} \mid \prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}$.

Proof. Since $C \subseteq D$, there exist polynomials $k(x)$ and $h(x)$ in $F_{q}[x]$ such that

$$
\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}=\prod_{i=0}^{\eta} f_{i}^{\beta_{i}} k(x)+\left(x^{n}-a\right)^{e} h(x), \text { in } F_{q}[x]
$$

Since $0 \leq \beta_{i} \leq e p^{s}, \prod_{i=1}^{\eta} f_{i}^{\beta_{i}} \mid\left(x^{n}-a\right)^{e}$ and hence $\prod_{i=1}^{\eta} f_{i}^{\beta_{i}} \mid \prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}$ in $F_{q}[x]$. Thus for any $i, 1 \leq i \leq \eta, \beta_{i} \leq \alpha_{i}$.

For the rest of this paper, all notations ψ, \mathcal{S}, T_{e} and $f_{i}(1 \leq i \leq \eta)$ are fixed as defined above.

Proposition 2.6. Let C be an $(a+b u)$-constacyclic code of length $n=m p^{s}$ over R. Then as an ideal of \mathcal{S}, C has a unique generator of the form $\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}$, where $0 \leq \alpha_{i} \leq e p^{s}$ and f_{i} are distinct monic irreducible divisors of $x^{m}-a_{0}$ in $F_{q}[x]$.

Proof. Since $C \unlhd \mathcal{S}, \psi(C) \unlhd T_{e}$ (by Proposition [2.31). Hence by Lemma [2.5, $\psi(C)$ has a unique generator of the form $\prod_{i=0}^{\eta} f_{i}^{\alpha_{i}}$, where $0 \leq \alpha_{i} \leq e p^{s}$. Since $\psi\left(f_{i}\right)=f_{i}$, we are done.

Remark 2.7. (i) Showing the uniqueness of the generators of constacyclic codes is open to doubt, (see, for example [7], Theotems 4.3, 4.5 and Corollary 4.7). Dinh et. al. [G] and also Guenda et. al. [5] seem to have used the uniqueness of the generators of constacyclic codes, implicitely, to calculate their numbers, although they have not pointed to it.
(ii) The authors of [4] and [5] have calculated $|C|$, where C is a constacyclic code, which seems not to be very accurate (for example, when the power of the distinct monic irreducible divisors of $x^{m}-a_{0}$ are greater than p^{s}, the equality does not hold). We shall find the exact number $|C|$, in the following corollary.

Corollary 2.8. (i) Let $C=<\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}>$ and $D=<\prod_{i=1}^{\eta} f_{i}^{\beta_{i}}>$ be ideals of \mathcal{S}, where $0 \leq \alpha_{i}, \beta_{i} \leq e p^{s}$. If $C \subseteq D$, then for any $i, 1 \leq i \leq \eta$, $\beta_{i} \leq \alpha_{i}$, that is, in $F_{q}[x], \prod_{i=1}^{\eta} f_{i}^{\beta_{i}} \mid$ $\prod_{i=0}^{\eta} f_{i}^{\alpha_{i}}$.
(ii) The number of $(a+b u)$-constacyclic codes of length $n=m p^{s}$ over R is $\left(e p^{s}+1\right)^{\eta}$.
(iii) If $C=<\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}>$ is an $(a+b u)-$ constacyclic code over R, then $|C|=q^{e n-\sum_{i=1}^{\eta} \alpha_{i} d e g ~} f_{i}$.

Proof. (i) Soppose that $C \subseteq D$. Thus with the previous notations, $\psi(C) \subseteq \psi(D)$. Since $\psi\left(f_{i}\right)=f_{i}$, the result follows by Lemma 2.5.
(ii) By the uniqueness of generators of these codes, the proof is straightforward.
(iii) Since $|C|=|\psi(C)|$ and $\psi(C)$ is an ideal of $T_{e},|C|=q^{e n-\sum_{i=1}^{\eta} \alpha_{i} d e g ~ f_{i}}$.

Lemma 2.9. Let $C=<\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}>$ be an ideal of $\mathcal{S}, 0 \leq \alpha_{i} \leq e p^{s}$. Then for a non-negative integer $l,\left\langle u^{l}\right\rangle \subseteq C$ if and only if for any $i, 1 \leq i \leq \eta, 0 \leq \alpha_{i} \leq l p^{s}$.

Proof. $<u^{l}>\subseteq C$ if and only if $\psi\left(<u^{l}>\right) \subseteq \psi(C)$ if and only if $<x^{n}-a>^{l} \subseteq<\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}>$ if and only if $<\prod_{i=1}^{\eta} f_{i}^{l p^{s}}>\subseteq<\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}>$ if and only if $0 \leq \alpha_{i} \leq l p^{s}$ for any $i, 1 \leq i \leq \eta$ (by Lemma [2.5).

Let $C=<\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}>$ be an $(a+b u)$-constacyclic code over R, where $0 \leq \alpha_{i} \leq e p^{s}$. Assume that there exists $k, 0 \leq k \leq e-1$ such that $k p^{s} \leq \alpha_{i} \leq(k+1) p^{s}$, for $i, 1 \leq i \leq \eta$. Let $\alpha_{i}=k p^{s}+\beta_{i}, 0 \leq \beta_{i}<p^{s}$. Then

$$
\begin{aligned}
\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}} & =\left(\prod_{i=1}^{\eta} f_{i}^{p^{s}}\right)^{k} \prod_{i=1}^{\eta} f_{i}^{\beta_{i}} \\
& =\left(x^{n}-a\right)^{k} \prod_{i=1}^{\eta} f_{i}^{\beta_{i}} \\
& =b^{k} u^{k} \prod_{i=1}^{\eta} f_{i}^{\beta_{i}} .
\end{aligned}
$$

Obviously, $g(x)=\prod_{i=1}^{\eta} f_{i}^{\beta_{i}}$ divides $x^{n}-a$ in $F_{q}[x]$ and $C=<u^{k} g(x)>$.

In order to give a characterization of the generators of an $(a+b u)$-constacyclic code, we construct the following polynomials $g_{i}(x) \in F_{q}[x]$. Suppose that $f(x)=\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}$, where $0 \leq \alpha_{i} \leq e p^{s}, 1 \leq i \leq \eta$. Changing the indices so that for the non-negative integers $0=$
$s_{0} \leq s_{1} \leq \ldots \leq s_{e}=\eta, 0 \leq \alpha_{1}, \alpha_{2}, \ldots, \alpha_{s_{1}} \leq p^{s}<\alpha_{s_{1}+1}, \ldots, \alpha_{s_{2}} \leq 2 p^{s}<\ldots \leq(e-1) p^{s}<$ $\alpha_{s_{e-1}+1}, \ldots, \alpha_{s_{e}} \leq e p^{s}$. Suppose that

$$
\begin{array}{cc}
\alpha_{s_{1}+j_{1}}=p^{s}+\beta_{s_{1}+j_{1}}, & 0<\beta_{s_{1}+j_{1}} \leq p^{s} \\
\alpha_{s_{2}+j_{2}}=2 p^{s}+\beta_{s_{2}+j_{2}}, & 0<\beta_{s_{2}+j_{2}} \leq p^{s} \\
\vdots & \\
\alpha_{s_{e-1}+j_{e-1}}=(e-1) p^{s}+\beta_{s_{e-1}+j_{e-1}}, & 0<\beta_{s_{e-1}+j_{e-1}} \leq p^{s} .
\end{array}
$$

We have

$$
\begin{aligned}
g_{0}(x) & =\operatorname{gcd}\left(f(x), x^{n}-a\right)=\left(f_{s_{0}+1}^{\alpha_{1}} \ldots f_{s_{1}}^{\alpha_{s_{1}}}\right)\left(\prod_{i=s_{1}+1}^{\eta} f_{i}^{p^{s}}\right) \\
g_{1}(x) & =\operatorname{gcd}\left(\frac{f(x)}{g_{0}(x)}, g_{0}(x)\right)=\left(f_{s_{1}+1}^{\beta_{s_{1}+1}} \ldots f_{s_{2}}^{\beta_{s_{2}}}\right)\left(\prod_{i=s_{2}+1}^{\eta} f_{i}^{p^{s}}\right) \\
& \vdots \\
g_{e-2}(x) & =\operatorname{gcd}\left(\frac{f(x)}{g_{0}(x) g_{1}(x) \ldots g_{e-3}(x)}, g_{e-3}(x)\right)=\left(f_{s_{e-2}+1}^{\beta_{s_{e-2}+1}} \ldots f_{s_{e-1}}^{\beta_{s_{e-1}}}\right)\left(\prod_{i=s_{e-1}+1}^{\eta} f_{i}^{p^{s}}\right) \\
g_{e-1}(x) & =\operatorname{gcd}\left(\frac{f(x)}{g_{0}(x) g_{1}(x) \ldots g_{e-2}(x)}, g_{e-2}(x)\right)=\left(f_{s_{e-1}+1}^{\beta_{s_{e-1}+1}} \ldots f_{s_{e}}^{\beta_{s_{e}}}\right) .
\end{aligned}
$$

(If $s_{j}=s_{j+1}$, we have $g_{j}(x)=\prod_{i=s_{j}+1}^{\eta} f_{i}^{p^{s}}$.) We can see that $g_{e-1}(x)|\cdots| g_{1}(x)\left|g_{0}(x)\right| x^{n}-a$ in $F_{q}[x]$ and $\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}=\prod_{i=0}^{e-1} g_{i}(x)$. Therefore, we have the following form of the generators of an $(a+b u)$-constacyclic code over R.

Proposition 2.10. Let C be an $(a+b u)$-constacyclic code over R. Then $C=<$ $g_{0} g_{1} \ldots g_{e-1}>$, where g_{i} are monic polynomials in $F_{q}[x]$ such that $g_{e-1}(x)|\cdots| g_{1}(x) \mid$ $g_{0}(x) \mid x^{n}-a$. Also $|C|=q^{e n-\sum_{i=0}^{e-1} t_{i}}$ where deg $g_{i}=t_{i}$.

Note. From now on, for an $(a+b u)$-constacyclic code C, the related polynomials $g_{0}(x), g_{1}(x), \ldots, g_{e-1}(x)$ with deg $g_{i}=t_{i}, 0 \leq i \leq e-1$, are fixed.

Lemma 2.11. Let $C=<g_{0} g_{1} \ldots g_{e-1}>$ be an $(a+b u)-$ constacyclic code over R and l be a non-negative integer less than e. Then $<u^{l}>\subseteq C$ if and only if $g_{l}=g_{l+1}=\cdots=g_{e-1}=1$.

Proof. By Lemma 2..9, $<u^{l}>\subseteq C$ if and only if $C=<\prod_{i=1}^{\eta} f_{i}^{\alpha_{i}}>$, where $0 \leq \alpha_{i} \leq l p^{s}$. The rest of the proof is similar to the disscussion preceding Proposition [.]. .

Lemma 2.12. Let $C=<g_{0} g_{1} \ldots g_{e-1}>$ be an $(a+b u)-$ constacyclic code over R. If $f(x) \in$ $F_{q}[x]$ is a polynomial of the lowest degree such that $u^{e-1} f(x) \in C$, then $f(x)=g_{e-1}$.

Proof. First note that $g_{0} g_{1} \ldots g_{e-1} \mid g_{e-1}\left(x^{n}-a\right)^{e-1}$. Thus $u^{e-1} g_{e-1} \in C$. By the division algorithm in $F_{q}[x]$,

$$
g_{e-1}(x)=f(x) g(x)+s(x), \text { where } \operatorname{deg} s<\operatorname{deg} f
$$

Since $u^{e-1} g_{e-1}(x)$ and $u^{e-1} f(x)$ are in $C, u^{e-1} s(x) \in C$. Hence $s(x)=0$. Thus $g_{e-1}(x)=$ $f(x) g(x)$. Since $u^{e-1} f(x) \in C,\left(x^{n}-a\right)^{e-1} f(x) \in \psi(C)$, where ψ is the isomorphism in Proposition [2.3. So there exists $h(x) \in T_{e}$, where deg $h<e n-\sum_{i=0}^{e-1} t_{i}$, such that ($x^{n}-$ $a)^{e-1} f(x)=g_{0} g_{1} \ldots g_{e-1} h(x)$. Since the degree of two sides of the above equality is lower than $e n$, we can consider this equality in $F_{q}[x]$. Hence $\left(x^{n}-a\right)^{e-1}=g_{0} g_{1} \ldots g_{e-2} g(x) h(x)$. Let $D=<g_{0} g_{1} \ldots g_{e-2} g>\unlhd \mathcal{S}$. Then $u^{e-1}=\left(x^{n}-a\right)^{e-1} \in D$ and $g(x)\left|g_{e-2}(x)\right| \cdots\left|g_{1}(x)\right|$ $g_{0}(x) \mid x^{n}-a$. By Lemma [.] for $D, g(x)=1$. Hence $f(x)=g_{e-1}$.

Proposition 2.13. Let $C=<g_{0} g_{1} \ldots g_{e-1}>$ be an $(a+b u)$-constacyclic code over R. Then $u^{e-1} g_{e-1}$ has the lowest degree between all non-zero elements of C.

Proof. Assume that $d(x) \in C$ has the lowest degree between all non-zero elements of C. Let $d(x)=\sum_{i=0}^{e-1} d_{i}(x) u^{i}$, where $d_{i}(x) \in F_{q}[x]$ and deg $d_{i}<n, 0 \leq i \leq e-1$. There exists the smallest non-negative integer $j, 0 \leq j \leq e-1$, such that deg $d_{j}=\operatorname{deg} d$. For any l, $0 \leq l \leq j-1$, deg $d_{l}<\operatorname{deg} d$. Now, $u^{e-1} d_{0}(x)=u^{e-1} d(x) \in C$. Since $d(x)$ has the lowest degree in C and $\operatorname{deg} d_{0}=\operatorname{deg} u^{e-1} d_{0}<\operatorname{deg} d, u^{e-1} d_{0}(x)=0$ and so $d_{0}(x)=0$. Also $u^{e-1} d_{1}(x)=u^{e-2} d(x) \in C$. Since $d(x)$ has the lowest degree in C and $\operatorname{deg} d_{1}=\operatorname{deg} u^{e-1} d_{1}<$ $\operatorname{deg} d, d_{1}(x)=0$. Similarly, $d_{2}(x)=\ldots=d_{j-1}(x)=0$. Now $u^{e-1} d_{j}(x)=u^{e-1-j} d(x) \in C$. Since deg $u^{e-1} d_{j}=\operatorname{deg} d_{j}=\operatorname{deg} d, u^{e-1} d_{j}(x)$ has the lowest degree in C. So by Lemma ए.ГD, $d_{j}(x)=g_{e-1}(x)$. Hence $\operatorname{deg} d=\operatorname{deg} d_{j}=\operatorname{deg} g_{e-1}=\operatorname{deg} u^{e-1} g_{e-1}$. Therefore, $u^{e-1} g_{e-1}$ has the lowest degree between all non-zero elements of C.

3. The minimal spanning set of constacyclic codes

In this section we shall determine the minimal spanning set for an ($a+b u$)-constacyclic code over R. Let us define the following notations. If $h_{j}(x),-1 \leq j \leq r$, are polynomials in $F_{q}[x]$ such that $\operatorname{deg} h_{j}=t_{j}$ and

$$
\begin{equation*}
h_{r}(x)|\ldots| h_{0}(x) \mid h_{-1}(x), \tag{1}
\end{equation*}
$$

then we assign the underling set $\left\{f(x), x f(x), \ldots, x^{t_{-1}-t_{0}-1} f(x) \mid f=\prod_{i=0}^{r} h_{i}\right\}$ for the property (四). If $t_{-1}=t_{0}$, then the empty set \varnothing will be assigned to be the underlying set.

First we provide the minimal spanning set for two special cases.
In the following proposition, we determine the minimal spanning set for all constacyclic codes over $R=F_{q}+u F_{q}$, where $u^{2}=0$. To do so, we need the following lemma whose proof is straightforward.

Lemma 3.1. Let $R=F_{q}+u F_{q}$, where $u^{2}=0$ and $g(x)$ be a divisor of $x^{n}-a$ in $F_{q}[x]$. If $g(x) k(x)=0$ for some $k(x) \in \mathcal{S}$, then there exists $h(x) \in F_{q}[x]$ such that deg $h \leq n-1$ and $k(x)=u h(x)$.

Proposition 3.2. Let $C=<g_{0} g_{1}>$ be an $(a+b u)-$ constacyclic code over $R=F_{q}+u F_{q}$, where $u^{2}=0$ and deg $g_{i}=t_{i}, i=0,1$. Suppose that A_{0} is the underlying set for $g_{1}(x)\left|g_{0}(x)\right| x^{n}-a$ and A_{1} is the underlying set for $g_{1}(x) \mid g_{0}(x)$. Then

$$
\Delta=A_{0} \bigcup u A_{1}=\left\{g_{0} g_{1}, x g_{0} g_{1}, \ldots, x^{n-t_{0}-1} g_{0} g_{1}\right\} \bigcup\left\{u g_{1}, x u g_{1}, \ldots, x^{t_{0}-t_{1}-1} u g_{1}\right\}
$$

is a minimal spanning set for C as an R-module.
Proof. First, we show that $\widehat{\Delta}=A_{0} \bigcup u A_{0} \bigcup u A_{1}$ is a linearly independent set over F_{q}. Suppose that

$$
\begin{equation*}
\sum_{i=0}^{n-t_{0}-1}\left(k_{i}+u k_{i}^{\prime}\right) x^{i} g_{0} g_{1}+\sum_{j=0}^{t_{0}-t_{1}-1} d_{j} x^{j} u g_{1}=0 \tag{2}
\end{equation*}
$$

where k_{i}, k_{i}^{\prime} and d_{j} are in $F_{q}, 0 \leq i \leq n-t_{0}-1,0 \leq j \leq t_{0}-t_{1}-1$. Let $k(x)=$ $\sum_{i=0}^{n-t_{0}-1} k_{i} x^{i}, k^{\prime}(x)=\sum_{i=0}^{n-t_{0}-1} k_{i}^{\prime} x^{i}$ and $d(x)=\sum_{j=0}^{t_{0}-t_{1}-1} d_{j} x^{j}$. We show that $k(x), k^{\prime}(x)$ and $d(x)$ are zero. In $\mathcal{S}, g_{1}(x)\left[k(x) g_{0}(x)+u k^{\prime}(x) g_{0}(x)+u d(x)\right]=0$. Hence by Lemma [3.D, $k(x) g_{0}(x)+u k^{\prime}(x) g_{0}(x)+u d(x)=u h(x)$, where $h(x) \in F_{q}[x]$ and deg $h<n$. Since in the above equation the degree of all polynomials are lower than n, we can consider that equation in $R[x]$. So $k^{\prime}(x) g_{0}(x)+d(x)=h(x)$ and $k(x) g_{0}(x)=0$ (in $F_{q}[x]$). Since $g_{0}(x) \neq 0, k(x)=0$. Therefore, by (Z),

$$
\begin{equation*}
u k^{\prime}(x) g_{0}(x) g_{1}(x)+u d(x) g_{1}(x)=0, \tag{3}
\end{equation*}
$$

in \mathcal{S}. Now, in $F_{q}[x], k^{\prime}(x) g_{0}(x) g_{1}(x)=\left(x^{n}-a\right) s(x)+q(x)$, where $\operatorname{deg} q \leq n-1$ and deg $s \leq t_{1}-1$. Also $g_{0}(x) \mid q(x)$. Assume that $q(x)=g_{0}(x) q^{\prime}(x)$, deg $q^{\prime} \leq n-t_{0}-1$. Hence in $\mathcal{S}, k^{\prime}(x) g_{0}(x) g_{1}(x)=b u s(x)+g_{0}(x) q^{\prime}(x)$. Now using (B), $u g_{0}(x) q^{\prime}(x)+u d(x) g_{1}(x)=0$. So $g_{0}(x) q^{\prime}(x)+d(x) g_{1}(x)=0$ (by Lemma [.1.). Hence $g_{0}(x) \mid d(x) g_{1}(x)$. Since deg $d g_{1}<\operatorname{deg} g_{0}$, $d(x)=0$. So $q^{\prime}(x)=0$. Therefore, $k^{\prime}(x) g_{0}(x) g_{1}(x)=\operatorname{bus}(x)$. Hence $u s(x) \in C$. Since by Proposition [2.]3, $u g_{1}(x)$ has the lowest degree in $C, s(x)=0$. Thus $k^{\prime}(x) g_{0}(x) g_{1}(x)=0$ in $F_{q}[x]$. Hence $k^{\prime}(x)=0$. Now, $|\widehat{\Delta}|=2 n-t_{0}-t_{1}$ is equal to the dimension of C as a vector space over F_{q} (by Corollary [2.8, part (iii)). So $\widehat{\Delta}$ is an spanning set for C as an F_{q}-module. Hence Δ generate C as an R-module. Also since $\widehat{\Delta}$ is linearly independent, Δ is a minimal spanning set for C.

In the following lemma, we determine the minimal spanning set for the constacyclic code $C=<u^{k} g(x)>$ over $R=F_{q}+u F_{q}+\cdots+u^{e-1} F_{q}$, where $u^{e}=0$ and $g(x) \in F_{q}[x]$ is a divisor
of $x^{n}-a$ (see the discussion after Lemma [2.9). This lemma is used in the proof of Proposition 3.8.

Lemma 3.3. Let $C=<u^{k} g(x)>$ be an ($\left.a+b u\right)$-constacyclic code over R, where $g(x) \mid x^{n}-a$, $0 \leq k \leq e-1$ and deg $g=t$. Suppose that B_{0} is the underlying set for $1|g(x)| x^{n}-a$ and B_{1} is the underlying set for $1 \mid g(x)$, if $0 \leq k \leq e-2$ and \varnothing, if $k=e-1$. Then $\Omega=u^{k} B_{0} \bigcup u^{k+1} B_{1}$ is a minimal spanning set for C as an R-module. Also, $|C|=q^{(e-k) n-t}$.

Proof. First, we show that Ω is a spanning set. Let $c(x) \in C$. Thus $c(x)=u^{k} g(x) l(x)$ for some $l(x) \in \mathcal{S}$. If $\operatorname{deg} l \leq n-t-1$, then we are done. Suppose that $\operatorname{deg} l \geq n-t$. In $R[x]$,

$$
l(x)=\left(\frac{x^{n}-a}{g(x)}\right) q(x)+s(x), \text { where } \operatorname{deg} s \leq n-t-1 \text { and } \operatorname{deg} q \leq t-1 .
$$

Now in \mathcal{S},

$$
\begin{aligned}
c(x) & =u^{k} g(x)\left(\left(\frac{x^{n}-a}{g(x)}\right) q(x)+s(x)\right) \\
& =u^{k} q(x)\left(x^{n}-a\right)+u^{k} g(x) s(x) \\
& =b u^{k+1} q(x)+u^{k} g(x) s(x) .
\end{aligned}
$$

(Note that if $k=e-1$, then $b u^{k+1} q(x)=0$.) Hence

$$
\Omega=\left\{u^{k} g, x u^{k} g, \ldots, x^{n-t-1} u^{k} g, u^{k+1}, x u^{k+1}, \ldots, x^{t-1} u^{k+1}\right\}
$$

is a spanning set for C if $0 \leq k \leq e-2$. Also if $k=e-1$, then

$$
\Omega=\left\{u^{e-1} g, x u^{e-1} g, \ldots, x^{n-t-1} u^{e-1} g\right\}
$$

is a spanning set for C. We claim that Ω is a minimal spanning set. For, it is enough to show that

$$
\sum_{i=0}^{n-t-1}\left(\sum_{j=0}^{e-k-1} l_{j i} u^{j}\right) x^{i} u^{k} g+\sum_{i^{\prime}=0}^{t-1}\left(\sum_{j^{\prime}=0}^{e-k-2} d_{j^{\prime} i^{\prime}} u^{j^{\prime}}\right) x^{i^{\prime}} u^{k+1}=0,
$$

implies that all coefficients $l_{j i}$ and $d_{j^{\prime} i^{\prime}}$ are zero in $F_{q}[x]$. Consider polynomials $l_{j}(x)=$ $\sum_{i=0}^{n-t-1} l_{j i} x^{i}$ and $d_{j^{\prime}}(x)=\sum_{i^{\prime}=0}^{t-1} d_{j^{\prime} i^{\prime}} x^{i^{\prime}}$, where $0 \leq j \leq e-k-1$ and $0 \leq j^{\prime} \leq e-k-2$. Thus in \mathcal{S},

$$
\left(\sum_{j=0}^{e-k-1} u^{j} l_{j}(x)\right) u^{k} g(x)+\left(\sum_{j^{\prime}=0}^{e-k-2} u^{j^{\prime}} d_{j^{\prime}}(x)\right) u^{k+1}=0 .
$$

Since the degree of all polynomials in the above equality is lower than n, by applying Lemma [2.Il, we have,

$$
l_{0}(x) g(x)=0 \text { and } l_{j}(x) g(x)+d_{j-1}(x)=0, \text { in } F_{q}[x], 1 \leq j \leq e-k-1 .
$$

Since $g(x) \neq 0, l_{0}(x)=0$. Also $\operatorname{deg}\left(l_{j} g\right)>\operatorname{deg} d_{j-1}$ implies that $l_{j}(x)=d_{j-1}(x)=0$.
To prove the last statement of the lemma, note that $\psi(C)=<\left(x^{n}-a\right)^{k} g(x)>$ and $|\psi(C)|=q^{e n-k n-t}$. Hence $|C|=q^{(e-k) n-t}$.

For every positive integer j, set $T_{j}=\frac{F_{q}[x]}{\left\langle x^{n}-a>j\right.}$. If $i \leq j$, then clearly T_{i} is a homomorphic image of T_{j}. Consider the natural ring epimorphism $\pi_{j i}: T_{j} \longrightarrow T_{i}$ with $k e r \pi_{j i}=\frac{\left\langle x^{n}-a\right\rangle^{i}}{\left\langle x^{n}-a\right\rangle^{j}}$. Note that for polynomials $h_{1}(x)$ and $h_{2}(x)$ in $F_{q}[x]$, if $h_{1}(x) \equiv h_{2}(x)\left(\bmod \left(x^{n}-a\right)^{j}\right)$, then
$\pi_{j i}\left(h_{1}(x)\right) \equiv \pi_{j i}\left(h_{2}(x)\right)\left(\bmod \left(x^{n}-a\right)^{i}\right)$. Obviously, every $h(x) \in T_{j}$ has a unique representation $h(x)=\sum_{l=0}^{j-1} h_{l}(x)\left(x^{n}-a\right)^{l}$, where $h_{l}(x) \in F_{q}[x]$ and $d e g h_{l}<n$ for any $l, 0 \leq l \leq j-1$. Thus we have

$$
\begin{aligned}
\pi_{j i}(h(x)) & =\pi_{j i}\left(\sum_{l=0}^{j-1} h_{l}(x)\left(x^{n}-a\right)^{l}\right) \\
& =\sum_{l=0}^{i-1} h_{l}(x)\left(x^{n}-a\right)^{l} .
\end{aligned}
$$

For $j \geq 2$, consider the finite chain ring $R_{j}=F_{q}+u_{j} F_{q}+\cdots+u_{j}^{j-1} F_{q}$, where $u_{j}^{j}=0$ and the principal ideal rings $S_{j}=\frac{R_{j}[x]}{\left\langle x^{n}-\left(a+b u_{j}\right)\right\rangle}$. In the following proposition, we show that if $i \leq j$, then S_{i} is a homomorphic image of S_{j}.

Proposition 3.4. Let i and j be two integers such that $1<i \leq j$. Then there exists an epimorphism $\beta_{j i}: S_{j} \longrightarrow S_{i}$ such that $\beta_{j i}\left(\sum_{l=0}^{j-1} h_{l}(x) u_{j}^{l}\right)=\sum_{l=0}^{i-1} h_{l}(x) u_{i}^{l}$, where $h_{l}(x) \in F_{q}[x]$ and deg $h_{l}<n$ for any $l, 0 \leq l \leq j-1$. Also ker $\beta_{j i}$ is the ideal of S_{j} generated by u_{j}^{i}.

Proof. Similar to the proof of Proposition 2.23, consider $\psi_{j}: S_{j} \rightarrow T_{j}$ by

$$
\psi_{j}\left(\sum_{l=0}^{j-1} u_{j}^{l} k_{l}(x)\right)=\sum_{l=0}^{j-1} b^{-l}\left(x^{n}-a\right)^{l} k_{l}(x),
$$

where $k_{l}(x) \in F_{q}[x]$, for any $l, 0 \leq l \leq j-1$ and deg $k_{l}<n$. Now we set $\beta_{j i}=\psi_{i}^{-1} \pi_{j i} \psi_{j}$ in

$$
S_{j} \xrightarrow{\psi_{j}} T_{j} \xrightarrow{\pi_{j i}} T_{i} \xrightarrow{\psi_{i}^{-1}} S_{i} .
$$

We can see that $\beta_{j i}$ is an epimorphism and $\operatorname{ker} \beta_{j i}=\psi_{j}^{-1}\left(\operatorname{ker} \pi_{j i}\right)$. Hence $\operatorname{ker} \beta_{j i}=<u_{j}^{i}>$. Furthermore, $\beta_{j i}\left(u_{j}\right)=u_{i}$. Since $\pi_{j i}\left(\left(x^{n}-a\right)^{l}\right)=0$ for all $l, l \geq i$,

$$
\beta_{j i}\left(u_{j}^{l}\right)=\left\{\begin{array}{ll}
0 & \text { if } l \geq i \\
u_{i}^{l} & \text { if } l<i
\end{array} .\right.
$$

Every element of S_{j} has a unique representation $\sum_{l=0}^{j-1} u_{j}^{l} h_{l}(x)$, where $h_{l}(x) \in F_{q}[x]$, for any l, $0 \leq l \leq j-1$ and deg $h_{l}<n$. Thus $\beta_{j i}\left(\sum_{l=0}^{j-1} h_{l}(x) u_{j}^{l}\right)=\sum_{l=0}^{i-1} h_{l}(x) u_{i}^{l}$.

Corollary 3.5. If $1<i \leq j$, then $\frac{S_{j}}{\left\langle u_{j}^{i}\right\rangle} \simeq S_{i}$.
Lemma 3.6. Suppose that $1<i \leq j$ and $h(x)$ is a polynomial in $F_{q}[x]$ such that deg $h<n i$.
Then $\beta_{j i}(h(x))=h(x)$.
Proof. Since deg $h<n i$, there exist polynomials $h_{l}(x) \in F_{q}[x], 0 \leq l \leq i-1$, of degree less than n such that $h(x)=\sum_{l=0}^{i-1}\left(x^{n}-a\right)^{l} h_{l}(x)$. In $S_{j}, h(x)=\sum_{l=0}^{i-1} b^{l} u_{j}^{l} h_{l}(x)$ and hence $\beta_{j i}(h(x))=h(x)$.

Lemma 3.7. Let $C=<\prod_{l=1}^{\eta} f_{l}^{\alpha_{l}}>$ be an ($a+b u$)-constacyclic code over R_{j}, where $0 \leq \alpha_{l} \leq$ $j p^{s}$. If $i \leq j$ and $<u_{j}^{i}>\subseteq C$, then $\beta_{j i}(C)$ as an ideal of S_{i} generated by $\prod_{l=1}^{\eta} f_{l}^{\alpha_{l}}$.

Proof. Since $<u_{j}^{i}>\subseteq C$, by Lemma [2.9, $0 \leq \alpha_{l} \leq i p^{s}$ for any $l, 1 \leq l \leq \eta$. Hence $\operatorname{deg}\left(\prod_{l=1}^{\eta} f_{l}^{\alpha_{l}}\right)<n i$. So $\beta_{j i}\left(\prod_{l=1}^{\eta} f_{l}^{\alpha_{l}}\right)=\prod_{l=1}^{\eta} f_{l}^{\alpha_{l}}$, by Lemma [3.6. Since C contains $k e r \beta_{j i}$, we can see that $\beta_{j i}(C)$ is an ideal of S_{i} generated by $\beta_{j i}\left(\prod_{l=1}^{\eta} f_{l}^{\alpha_{l}}\right)$.

With the previous notations, let $R_{3}=F_{q}+u F_{q}+u^{2} F_{q}$ and $R_{2}=F_{q}+v F_{q}$, where $u^{3}=0$ and $v^{2}=0$. Consider $S_{3}=\frac{R_{3}[x]}{\left\langle x^{n}-(a+b u)\right\rangle}$ and $S_{2}=\frac{R_{2}[x]}{\left\langle x^{n}-(a+b v)\right\rangle}$.

Proposition 3.8. Let $g_{1}(x)\left|g_{0}(x)\right| x^{n}-a$ and deg $g_{i}=t_{i}, i=0,1$, and let $k_{0}(x), k_{1}(x) \in$ $F_{q}[x]$, deg $k_{0} \leq n-t_{0}-1$ and deg $k_{1} \leq t_{0}-t_{1}-1$. If in S_{3},

$$
u^{2} k_{0}(x) g_{0} g_{1}+u^{2} k_{1}(x) g_{1}=0,
$$

then $k_{0}(x)=k_{1}(x)=0$ in $F_{q}[x]$.
Proof. If $g_{0}(x)=x^{n}-a$, then the result holds by Lemma [..1. Let $g_{0}(x) \neq x^{n}-a$ and $C=<g_{0} g_{1}>$ be the $(a+b u)-$ constacyclic code over R_{3}. Consider

$$
\begin{aligned}
A_{0} & =\left\{g_{0} g_{1}, x g_{0} g_{1}, \ldots, x^{n-t_{0}-1} g_{0} g_{1}\right\}, \\
A_{1} & =\left\{g_{1}, x g_{1}, \ldots, x^{t_{0}-t_{1}-1} g_{1}\right\}, \\
A_{2} & =\left\{1, x, \ldots, x^{t_{1}-1}\right\} .
\end{aligned}
$$

We show that $\Delta=A_{0} \bigcup u A_{1} \bigcup u^{2} A_{2}$ is a spanning set for C as an R_{3}-module. Clearly, every element of Δ is in C. Suppose that $\beta=\beta_{32}: S_{3} \longrightarrow S_{2}$ is the epimorphism in Proposition [.4. Since deg $\left(g_{0} g_{1}\right)<2 n$, by Lemma B.7, $\beta(C)$ is the ideal of S_{2} generated by $g_{0} g_{1}$. By Proposition [3.2, the set

$$
\left\{g_{0} g_{1}, x g_{0} g_{1}, \ldots, x^{n-t_{0}-1} g_{0} g_{1}\right\} \bigcup\left\{v g_{1}, x v g_{1}, \ldots, x^{t_{0}-t_{1}-1} v g_{1}\right\}
$$

is a minimal spanning set for $\beta(C)$. Also by Lemma 3.3 , the set $\left\{u^{2}, x u^{2}, \ldots, x^{n-1} u^{2}\right\}$ is a minimal spanning set for $\operatorname{ker} \beta=\left\langle u^{2}\right\rangle$. Assume that $c(x) \in C$. Hence

$$
c(x)=\sum_{i=0}^{n-t_{0}-1} r_{i} x^{i} g_{0} g_{1}+\sum_{j=0}^{t_{0}-t_{1}-1} s_{j} x^{j} u g_{1}+\sum_{l=0}^{n-1} d_{l} x^{l} u^{2},
$$

where $r_{i}, s_{j} \in R_{3}, 0 \leq i \leq n-t_{0}-1,0 \leq j \leq t_{0}-t_{1}-1$ and $d_{l} \in F_{q}, 0 \leq l \leq n-1$. Now, we shall show that $u^{2} x^{r}, t_{1} \leq r \leq n-1$, are in the R_{3}-module spanned by Δ. We have

$$
u^{2} x^{t_{1}}=u^{2}\left[g_{1}(x)+l(x)\right]=u^{2} g_{1}(x)+u^{2} l(x), \text { where } l(x) \in F_{q}[x] \text { and deg } l<t_{1} .
$$

Thus $u^{2} x^{t_{1}}$ is in the R_{3}-module spanned by Δ. Since $u x^{i} g_{1}(x) \in \Delta$ for any $i, 0 \leq i \leq t_{0}-t_{1}-1$, inductively, for $i, 0 \leq i \leq t_{0}-t_{1}-1, u^{2} x^{t_{1}+i}=u^{2} x^{i} g_{1}(x)+u^{2} x^{i} l(x)$ is generated by elements of Δ.

Now, by the division algorithm, there exist $k(x) \in F_{q}[x]$ with deg $k<t_{0}$ and $b_{0}, b_{1}, \cdots, b_{j}$ in F_{q} such that

$$
u^{2} x^{t_{0}+j}=u^{2}\left[b_{j} x^{j} g_{0}(x)+b_{j-1} x^{j-1} g_{0}(x)+\cdots+b_{0} g_{0}(x)+k(x)\right],
$$

where $0 \leq j \leq n-t_{0}-1$. We saw that $u^{2} k(x)$ is in the $R_{3}-$ module generated by Δ. It is enough
to prove that $u^{2} x^{i} g_{0}(x), 0 \leq i \leq j$, is generated by the elements of Δ. Clearly, $u x^{i} g_{0}(x) \in C$. Thus $\beta\left(u x^{i} g_{0}(x)\right)=v x^{i} g_{0}(x) \in \beta(C)$. Hence there exist $r_{i}^{\prime}, s_{j}^{\prime} \in R_{3}, 0 \leq i \leq n-t_{0}-1$ and $0 \leq j \leq t_{0}-t_{1}-1$ such that

$$
u x^{i} g_{0}(x)-\left(\sum_{i=0}^{n-t_{0}-1} r_{i}^{\prime} x^{i} g_{0} g_{1}+\sum_{j=0}^{t_{0}-t_{1}-1} s_{j}^{\prime} x^{j} u g_{1}\right) \in \operatorname{ker} \beta=<u^{2}>.
$$

Hence $u^{2} x^{i} g_{0}(x)=\sum_{i=0}^{n-t_{0}-1} u r_{i}^{\prime} x^{i} g_{0} g_{1}+\sum_{j=0}^{t_{0}-t_{1}-1} s_{j}^{\prime} x^{j} u^{2} g_{1}$. Therefore, Δ is a spanning set for C. Consider $\widehat{\Delta}=\bigcup_{l=0}^{2} \bigcup_{j=l}^{2} u^{j} A_{l}$. Since Δ is a spanning set for C as an $R_{3}-$ module, $\widehat{\Delta}$ is a spanning set for C as an F_{q}-module. Now $|\widehat{\Delta}|=q^{3 n-t_{0}-t_{1}}$ is equal to the dimension of C as a vector space, by Proposition [.] So $\widehat{\Delta}$ is a linearly independent set over F_{q}. Therefore, the result holds.

Notation. Suppose that $g_{i}(x), i=0,1,2$, are monic polynomials in $F_{q}[x]$ such that $g_{2}(x) \mid$ $g_{1}(x)\left|g_{0}(x)\right| x^{n}-a$ and $\operatorname{deg} g_{i}=t_{i}$. We set

$$
\begin{aligned}
& A_{0} \text {, the underlying set for } " g_{2}(x)\left|g_{1}(x)\right| g_{0}(x) \mid x^{n}-a ", \\
& A_{1} \text {, the underlying set for } " g_{2}(x)\left|g_{1}(x)\right| g_{0}(x) " \text { and } \\
& A_{2} \text {, the underlying set for } " g_{2}(x) \mid g_{1}(x) " .
\end{aligned}
$$

Proposition 3.9. Let $C=<g_{0} g_{1} g_{2}>$ be an $(a+b u)-$ constacyclic code over R_{3}. Then $\Gamma=\bigcup_{j=0}^{2} u^{j} A_{j}$ is a minimal spanning set for C.

Proof. Suppose that deg $g_{i}=t_{i}, 0 \leq i \leq 2$. We shall show that $\widehat{\Gamma}=\bigcup_{l=0}^{2} \bigcup_{j=l}^{2} u^{j} A_{l}$ is a linearly independent subset of S_{3} over F_{q}. Assume that in S_{3},

$$
\sum_{l=0}^{2} \sum_{j=l}^{2} \sum_{i=0}^{t_{l-1}-t_{l}-1} z_{l j i} u^{j} x^{i} \prod_{r=l}^{2} g_{r}=0, \text { where } t_{-1}=n \text { and } z_{l j i} \in F_{q} .
$$

In $F_{q}[x]$, set $k_{l j}=\sum_{i=0}^{t_{l-1}-t_{l}-1} z_{l j i} x^{i}$. Hence in S_{3},

$$
\left(k_{00}(x)+u k_{01}(x)+u^{2} k_{02}(x)\right) g_{0} g_{1} g_{2}+\left(k_{11}(x)+u k_{12}(x)\right) u g_{1} g_{2}+k_{22}(x) u^{2} g_{2}=0 .
$$

Thus there exist $h_{0}(x), h_{1}(x)$ and $h_{2}(x)$ in $F_{q}[x]$ such that

$$
\begin{aligned}
k_{00}(x) g_{0} g_{1} g_{2} & =\left(x^{n}-a\right) h_{0}(x) \\
k_{01}(x) g_{0} g_{1} g_{2}+k_{11}(x) g_{1} g_{2} & =\left(x^{n}-a\right) h_{1}(x)-b h_{0}(x) \\
k_{02}(x) g_{0} g_{1} g_{2}+k_{12}(x) g_{1} g_{2}+k_{22}(x) g_{2} & =\left(x^{n}-a\right) h_{2}(x)-b h_{1}(x) .
\end{aligned}
$$

By the third equality, $g_{2}(x) \mid h_{1}(x)$ and by the second equality, $g_{1}(x) g_{2}(x) \mid h_{0}(x)$. Hence $\left(x^{n}-a\right) \mid k_{00}(x) g_{0}(x)$. Since deg $k_{00} g_{0}<n, k_{00}(x)=h_{0}(x)=0$. So $k_{01}(x) g_{0} g_{1} g_{2}+k_{11}(x) g_{1} g_{2}=$ $\left(x^{n}-a\right) h_{1}(x)$. Therefore, $k_{01}(x) g_{0} g_{1}+k_{11}(x) g_{1}=\left(x^{n}-a\right) \frac{h_{1}(x)}{g_{2}}$. Now, in $S_{3}, u^{2} k_{01}(x) g_{0} g_{1}+$ $u^{2} k_{11}(x) g_{1}=0$. By Proposition B.8, $k_{01}(x)=k_{11}(x)=0$. Hence $h_{1}(x)=0$. So in the third equality, $g_{1}(x) \mid k_{22}(x) g_{2}(x)$. Since deg $k_{22} g_{2}<\operatorname{deg} g_{1}, k_{22}(x)=0$. Hence $k_{02}(x) g_{0} g_{1} g_{2}+$ $k_{12}(x) g_{1} g_{2}=\left(x^{n}-a\right) h_{2}(x)$. By the division algorithm in $F_{q}[x]$,

$$
h_{2}(x)=g_{2}(x) q(x)+s(x), \text { where } \operatorname{deg} s<\operatorname{deg} g_{2} .
$$

So in $S_{3}, u k_{02}(x) g_{0} g_{1} g_{2}+u k_{12}(x) g_{1} g_{2}=u^{2} g_{2}(x) q(x)+u^{2} s(x)$. Thus $u^{2} s(x) \in C$. Since deg $s<$ deg g_{2}, by Proposition [2.]3, $s(x)=0$. Hence $k_{02}(x) g_{0} g_{1} g_{2}+k_{12}(x) g_{1} g_{2}=\left(x^{n}-a\right) g_{2}(x) q(x)$. So $k_{02}(x) g_{0} g_{1}+k_{12}(x) g_{1}=\left(x^{n}-a\right) q(x)$. Now, in $S_{3}, u^{2} k_{02}(x) g_{0} g_{1}+u^{2} k_{12}(x) g_{1}=0$. By Proposition [3.7, $k_{02}(x)=k_{12}(x)=0$. Therefore, $\widehat{\Gamma}$ is linearly independent over F_{q}. So Γ is a minimal set over R_{3}. Since the number of elements of $\widehat{\Gamma}$ is equal to the dimension of $C, \widehat{\Gamma}$ is a basis for C over F_{q}. Thus Γ is a minimal spanning set for C over R_{3}. \square

Now, we shall determine the minimal spanning set for an $(a+b u)$-constacyclic code C over $R=F_{q}+u F_{q}+\cdots+u^{e-1} F_{q}$, where $u^{e}=0$.

Let $g_{i}, 0 \leq i \leq e-1$, be monic polynomials in $F_{q}[x]$ such that $g_{e-1}|\ldots| g_{1}\left|g_{0}\right| x^{n}-a$. According to (\mathbb{I}), suppose that A_{0} is the underlying set for " $g_{e-1}|\ldots| g_{1}\left|g_{0}\right| x^{n}-a$ " and each $A_{j}, 1 \leq j \leq e-1$ is the underlying set for " $g_{e-1}|\ldots| g_{j} \mid g_{j-1}$ ". Then we prove the following result.

Proposition 3.10. Let $C=<g_{0} g_{1} \ldots g_{e-1}>$ be an $(a+b u)$-constacyclic code over R. Then $\Gamma=\bigcup_{j=0}^{e-1} u^{j} A_{j}$ is a minimal spanning set for C as an R-module. Also, $|C|=q^{e n-\sum_{j=0}^{e-1} t_{j}}$, where deg $g_{j}=t_{j}, 0 \leq j \leq e-1$.

Proof. For $e=2$, we have Proposition [3.2. Inductively, similar to the proof of Proposition [3.8, for polynomials $k_{j}(x), 0 \leq j \leq i-2$ and $3 \leq i \leq e$, we can prove that in $S_{i}, k_{0}(x) g_{0} g_{1} \ldots g_{i-2}+$ $k_{1}(x) g_{1} g_{1} \ldots g_{i-2}+\cdots+k_{i-2}(x) g_{i-2}=0$ implies that $k_{0}(x)=k_{1}(x)=k_{i-2}(x)=0$ in $F_{q}[x]$, and similar to the proof of Proposition [3.9, we are done.

4. The minimum Hamming distance of constacyclic codes

In this section, we shall determine the minimum distance of an $(a+b u)$-constacyclic code over R. We correspond to any constacyclic code C over R, an ideal $\operatorname{Tor}(C)$ of T_{1} with the same minimum Hamming distance of C.

Lemma 4.1. Let $h_{1}(x)$ and $h_{2}(x)$ be two elements of $F_{q}[x]$. Suppose that for some $i, 0 \leq i \leq$ $e-1, u^{i} h_{1}(x) \equiv u^{i} h_{2}(x)\left(\bmod \left(x^{n}-(a+b u)\right)\right)$, in $R[x]$. Then $h_{1}(x) \equiv h_{2}(x)\left(\bmod \left(x^{n}-a\right)\right)$ in $F_{q}[x]$.

Proof. In $R[x]$,

$$
u^{i}\left(h_{1}(x)-h_{2}(x)\right)=\left(x^{n}-(a+b u)\right)\left(k_{0}(x)+u k_{1}(x)+\cdots+u^{e-1} k_{e-1}(x)\right),
$$

where $k_{j}(x) \in F_{q}[x](0 \leq j \leq e-1)$. Hence in $F_{q}[x]$,

$$
\begin{aligned}
0 & =\left(x^{n}-a\right) k_{0}(x) \\
0 & =\left(x^{n}-a\right) k_{1}(x)-b k_{0}(x) \\
& \vdots \\
0 & =\left(x^{n}-a\right) k_{i-1}(x)-b k_{i-2}(x) \\
h_{1}(x)-h_{2}(x) & =\left(x^{n}-a\right) k_{i}(x)-b k_{i-1}(x) .
\end{aligned}
$$

By the first i relations, we deduce that $k_{0}(x)=k_{1}(x)=\ldots=k_{i-1}(x)=0$. So $h_{1}(x)-h_{2}(x)=$ $\left(x^{n}-a\right) k_{i}(x)$ for $i, 0 \leq i \leq e-1$. Hence $h_{1}(x) \equiv h_{2}(x)\left(\bmod \left(x^{n}-a\right)\right)$ in $F_{q}[x]$.

Lemma 4.2. Let $h_{1}(x)$ and $h_{2}(x)$ be two elements of $F_{q}[x]$. Then $h_{1}(x) \equiv h_{2}(x)$ (mod $\left.\left(x^{n}-a\right)\right)$ in $F_{q}[x]$ if and only if $u^{e-1} h_{1}(x) \equiv u^{e-1} h_{2}(x)\left(\bmod \left(x^{n}-(a+b u)\right)\right)$ in $R[x]$.

Proof. $\Rightarrow)$ Assume that $h_{1}(x) \equiv h_{2}(x)\left(\bmod \left(x^{n}-a\right)\right)$ in $F_{q}[x]$. Hence there exists $k(x) \in F_{q}[x]$ such that $h_{1}(x)-h_{2}(x)=\left(x^{n}-a\right) k(x)$. So in $R[x], u^{e-1} h_{1}(x)-u^{e-1} h_{2}(x)=u^{e-1}\left(x^{n}-a\right) k(x)$. Since $x^{n}-a \equiv b u\left(\bmod \left(x^{n}-(a+b u)\right)\right), u^{e-1} h_{1}(x) \equiv u^{e-1} h_{2}(x)\left(\bmod \left(x^{n}-(a+b u)\right)\right)$. $\Leftarrow)$ The proof follows by Lemma 1.1 .

Suppose that C is an $(a+b u)$-constacyclic code over R. Regarding Lemma be the set of all polynomials $h(x)$ in T_{1} such that $u^{e-1} h(x) \in C$. Clearly $\operatorname{Tor}(C)$ is an ideal of T_{1}. Hence $\operatorname{Tor}(C)$ is generated by a unique monic divisor $k(x)$ of $x^{n}-a$ in $F_{q}[x]$. In fact, $\operatorname{Tor}(C)$ is an a-constacyclic code over F_{q}. If we consider C as an R-submodule of R^{n}, we can write

$$
\operatorname{Tor}(C)=\left\{\mathbf{h}=\left(h_{0}, h_{1}, \ldots, h_{n-1}\right) \in F_{q}^{n} \mid u^{e-1} \mathbf{h} \in C\right\} .
$$

Recall that the Hamming weight of $\mathbf{v} \in R^{n}$, is defined to be the number of non-zero components of \mathbf{v}. We denote by $d_{H}(C)$, the minimum Hamming distance of a code C. We shall show that $d_{H}(C)=d_{H}(\operatorname{Tor}(C))$.

Lemma 4.3. Let C be an $(a+b u)-$ constacyclic code over R. Then $d_{H}(C)=d_{H}(\operatorname{Tor}(C))$.
Proof. Since $u^{e-1} \operatorname{Tor}(C) \subseteq C, d_{H}(C) \leq d_{H}\left(u^{e-1} \operatorname{Tor}(C)\right)$. Clearly $d_{H}(\operatorname{Tor}(C))=$ $d_{H}\left(u^{e-1} \operatorname{Tor}(C)\right)$. Therefore $d_{H}(C) \leq d_{H}(\operatorname{Tor}(C))$. Assume that

$$
\mathbf{v}=\left(\sum_{i=0}^{e-1} v_{0 i} u^{i}, \sum_{i=0}^{e-1} v_{1 i} u^{i}, \ldots, \sum_{i=0}^{e-1} v_{n-1, i} u^{i}\right)
$$

is a non-zero element of $C, v_{j i} \in F_{q}, 0 \leq j \leq n-1$ and $0 \leq i \leq e-1$. Obviously, we can write $\mathbf{v}=\sum_{i=0}^{e-1}\left(v_{0 i}, v_{1 i}, \ldots, v_{n-1, i}\right) u^{i}$. Suppose that l is the lowest integer such that $\mathbf{w}_{l}=\left(v_{0 l}, v_{1 l}, \ldots, v_{n-1, l}\right) \neq 0$. Hence $u^{e-1-l} \mathbf{v}=u^{e-1} \mathbf{w}_{l}$. Since $u^{e-1-l} \mathbf{v} \in C, u^{e-1} \mathbf{w}_{l} \in C$. So $\mathbf{w}_{l} \in \operatorname{Tor}(C)$. Thus $w t_{H}\left(\mathbf{w}_{l}\right) \geq d_{H}(\operatorname{Tor}(C))$. Therefore,

$$
w t_{H}(\mathbf{v}) \geq w t_{H}\left(u^{e-1-l} \mathbf{v}\right)=w t_{H}\left(u^{e-1} \mathbf{w}_{l}\right)=w t_{H}\left(\mathbf{w}_{l}\right) \geq d_{H}(\operatorname{Tor}(C)) .
$$

This shows that $d_{H}(C) \geq d_{H}(\operatorname{Tor}(C))$.

Proposition 4.4. Let $C=<g_{0} g_{1} \ldots g_{e-1}>$ be an $(a+b u)$-constacyclic code over R. Then Tor (C) is the ideal of T_{1} generated by g_{e-1}.

Proof. Assume that $h(x)$ is the monic polynomial of the lowest degree in Tor (C). Thus $h(x)$ is a generator of $\operatorname{Tor}(C)$ as an ideal of T_{1}. Since $u^{e-1} h(x) \in C, h(x)=g_{e-1}(x)$ by Lemma [2.2]. \square

Example 4.5. Let $R=F_{2}+u F_{2}+u^{2} F_{2}$, where $u^{3}=0$ and $\mathcal{S}=\frac{R[x]}{\left\langle x^{15}-(1+u)\right\rangle}$. In $F_{2}[x]$, $x^{15}-1=f_{1} f_{2} f_{3} f_{4} f_{5}$, where $f_{1}=x+1, f_{2}=x^{2}+x+1, f_{3}=x^{4}+x^{3}+x^{2}+x+1, f_{4}=x^{4}+x^{3}+1$ and $f_{5}=x^{4}+x+1$ are irreducible polynomials. Now, consider the $(1+u)-$ constacyclic code $C=<f_{1}^{2} f_{2} f_{4}^{3}>$. We can see that $|C|=2^{19}$ and with the notations of Proposition [2.] , $g_{0}=f_{1} f_{2} f_{4}, g_{1}=f_{1} f_{4}$ and $g_{2}=f_{4}$. Since $\operatorname{Tor}(C)$ is an ideal of $\frac{F_{2}[x]}{\left\langle x^{15}-1\right\rangle}$, it is the cyclic Hamming code generated by f_{4} over F_{2}. Therefore, $d_{H}(C)=d_{H}(\operatorname{Tor}(C))=3$.

With the previous notations, we see that $d_{H}(C)=d_{H}(\operatorname{Tor}(C))$. Then we examine the a-constacyclic codes over F_{q}. Recall that, for a polynomial $f(x) \in F_{q}[x]$, the number of non-zero coefficients of $f(x)$ in $F_{q}[x]$ is called the weight of $f(x)$ and is denoted by $w t[f(x)]$.

Lemma 4.6. Suppose that $n=m p^{s}$ and $k(x)=f(x)\left(x^{m p^{s-1}}-c\right)^{t}$, where $c \in F_{q}^{*}, f(x) \in F_{q}[x]$ and deg $f<m p^{s-1}$. If $t \leq p-1$, then $w t[k(x)]=(t+1) \cdot w t[f(x)]$ and deg $k<n$.

Proof. Suppose that $w t[f(x)]=l$ and $f(x)=a_{i_{1}} x^{i_{1}}+a_{i_{2}} x^{i_{2}}+\cdots+a i_{l} x^{i_{l}}$, where for any r, $1 \leq r \leq l, a_{i_{r}} \neq 0$. We have

$$
k(x)=\sum_{j=0}^{t}\left(\begin{array}{l}
t \tag{4}\\
j
\end{array} c^{t-j}\left(a_{i_{1}} x^{i_{1}+j m p^{s-1}}+a_{i_{2}} x^{i_{2}+j m p^{s-1}}+\cdots+a_{i_{l}} x^{i_{l}+j m p^{s-1}}\right)\right.
$$

Since for any $r, 1 \leq r \leq l, i_{r} \leq \operatorname{deg} f<m p^{s-1}$,

$$
i_{r}+j m p^{s-1}<m p^{s-1}+j m p^{s-1}=(1+j) m p^{s-1} \leq m p^{s}=n .
$$

So deg $k<n$. Now, $t \leq p-1$ implies that $\binom{t}{j}$ is a non-zero element of F_{q}. Hence $\binom{t}{j} c^{t-j} \neq 0$. Also, in the righthand side of ($\mathbb{(G)}$) the powers of x are different. So $w t[k(x)]=(t+1) \cdot w t[f(x)]$.

Assume that $k(x)=f_{1}^{\alpha_{1}} f_{2}^{\alpha_{2}} \ldots f_{\eta}^{\alpha_{\eta}},\left(0 \leq \alpha_{j} \leq p^{s}\right)$ and a has an $n-$ th root $a_{1} \in F_{q}^{*}$. Suppose that r is a positive integer such that
i) For any $j, 1 \leq j \leq r, \alpha_{j}=(p-1) p^{s-1}+d_{j}$ and $0<d_{j} \leq p^{s-1}$,
ii) For any $j, r+1 \leq j<\eta, \alpha_{j} \leq(p-1) p^{s-1}$.

Then we have the following proposition.

Proposition 4.7. By the above notations, consider the a-constacyclic code $D=<k(x)>$ $\triangleleft T_{1}$. Then

$$
d_{H}(D) \leq p . w t\left[f_{1}^{d_{1}} f_{2}^{d_{2}} \ldots f_{r}^{d_{r}}\right]
$$

Proof. Let $D \neq 0$ and $l(x)=f_{1}^{d_{1}} f_{2}^{d_{2}} \ldots f_{r}^{d_{r}}$. We have deg $l<m p^{s-1}$. Thus

$$
\operatorname{deg}\left(l(x)\left(x^{m p^{s-1}}-a_{1}^{m p^{s-1}}\right)^{p-1}\right)<m p^{s-1}+m p^{s-1}(p-1) \leq m p^{s}=n
$$

If $h(x)=l(x)\left(x^{m p^{s-1}}-a_{1}^{m p^{s-1}}\right)^{p-1}$, then $w t[h(x)]$ in $F_{q}[x]$ is equal to the weight of $h(x)$ in T_{1}.
Now,

$$
\begin{aligned}
h(x) & =l(x)\left(x^{m p^{s-1}}-a_{1}^{m p^{s-1}}\right)^{p-1} \\
& =l(x)\left(f_{1} f_{2} \ldots f_{\eta}\right)^{(p-1) p^{s-1}} \\
& =\left(f_{1}^{(p-1) p^{s-1}+d_{1}} \ldots f_{r}^{(p-1) p^{s-1}+d_{r}} f_{r+1}^{\alpha_{r+1}} \ldots f_{\eta}^{\alpha_{\eta}}\right)\left(f_{r+1}^{(p-1) p^{s-1}-\alpha_{r+1}} \ldots f_{\eta}^{(p-1) p^{s-1}-\alpha_{\eta}}\right) \\
& =k(x)\left(f_{r+1}^{(p-1) p^{s-1}-\alpha_{r+1}} \ldots f_{\eta}^{(p-1) p^{s-1}-\alpha_{\eta}}\right) \in D .
\end{aligned}
$$

By Lemma 4.6, $w t[h(x)]=p . w t[l(x)]$. So $d_{H}(D) \leq p . w t[l(x)]$.

Lemma 4.8. Suppose that $D=<k(x)>$ is an a-constacyclic code over F_{q}, where $k(x) \mid$ $x^{n}-a$. If $f(x)$ is a non-zero element of D, then there exists $h(x) \in F_{q}[x]$ with deg $h<n-\operatorname{deg} k$ such that $p(x) \equiv h(x) k(x)\left(\bmod \left(x^{n}-a\right)\right)$.

Proof. The proof is straightforward.

Proposition 4.9. [8, Theorem 6.3] For any polynomial $p(x)$ over $G F\left(p^{r}\right)$, the Galois field of order p^{r}, any non-zero element c of $G F\left(p^{r}\right)$, and any non-negative integers n and N,

$$
w t\left[p(x)\left(x^{n}-c\right)^{N}\right] \geq w t\left[\left(x^{n}-c\right)^{N}\right] \cdot w t\left[p(x) \bmod \left(x^{n}-c\right)\right]
$$

Proposition 4.10. Let $D=<k(x)>$ be an a-constacyclic code over F_{q}, where $k(x) \mid x^{n}-a$. If a_{1} is an $n-$ th root of a in F_{q} and i is the largest non-negative integer such that $\left(x-a_{1}\right)^{i} \mid k(x)$, then

$$
d_{H}(D) \geq \min \left\{w t\left[\left(x-a_{1}\right)^{i+j}\right] \mid 0 \leq j<n-\operatorname{deg} k\right\}
$$

Proof. Assume that $f(x)$ is a non-zero element of D. Thus there exists $l(x) \in F_{q}[x]$ with deg $l<n-\operatorname{deg} k$ such that $f(x) \equiv l(x) k(x)\left(\bmod \left(x^{n}-a\right)\right)$ by Lemma 4.8. Let j be the largest non-negative integer such that $\left(x-a_{1}\right)^{j} \mid l(x)$. Now the weight of $f(x)$ in T_{1} is equal to $w t[k(x) l(x)]$ in $F_{q}[x]$ and by Proposition $4 . .9$, we have

$$
\begin{aligned}
w t[k(x) l(x)] & =w t\left[\left(x-a_{1}\right)^{i+j} \frac{k(x) l(x)}{\left(x-a_{1}\right)^{i+j}}\right] \\
& \geq w t\left[\left(x-a_{1}\right)^{i+j}\right] \cdot w t\left[\frac{k(x) l(x)}{\left(x-a_{1}\right)^{i+j}} \bmod \left(x-a_{1}\right)\right] \\
& \geq w t\left[\left(x-a_{1}\right)^{i+j}\right] .
\end{aligned}
$$

So $d_{H}(D) \geq \min \left\{w t\left[\left(x-a_{1}\right)^{i+j}\right] \mid 0 \leq j<n-\operatorname{deg} k\right\}$.

Example 4.11. Consider $C=<u(x-1)^{2}>$ as an $(1+u)$-constacyclic code over $R=F_{3}+u F_{3}$ $\left(u^{2}=0\right)$ of length $6\left(C \triangleleft \frac{R[x]}{\left\langle x^{6}-(1+u)\right\rangle}\right)$. We shall show that $d_{H}(C)=2$. Obviously, $\operatorname{Tor}(C)$ is the cyclic code of length 6 over F_{3} generated by $(x-1)^{2}$. By Proposition 4.T01, $d_{H}(\operatorname{Tor}(C)) \geq$ $\min \left\{\omega t\left[(x-1)^{\alpha}\right] \mid 2 \leq \alpha<6\right\}$. So, $d_{H}(C)=d_{H}(\operatorname{Tor}(C)) \geq 2$. Also $x^{3}-1$ is a codeword in $\operatorname{Tor}(C)$ of weight 2 . So the equality does hold.

Proposition 4.12. Suppose that $a_{1} \in F_{q}^{*}$ is an $n-$ th root of a. Let $D=<f_{1}^{\alpha_{1}} f_{2}^{\alpha_{2}} \ldots f_{\eta}^{\alpha_{\eta}}>$, be an a-constacyclic code over F_{q}, where $f_{1}, f_{2}, \ldots, f_{\eta}$ are the monic irreducible divisors of $x^{m}-a_{0}$. If there exists t such that $t \leq p-1$ and $\alpha_{j} \leq t p^{s-1}$ for any j, then $d_{H}(D) \leq t+1$.

Proof. We have

$$
\begin{aligned}
\left(x^{m p^{s-1}}-a_{1}^{m p^{s-1}}\right)^{t} & =\left(\left(x^{m}-a_{1}^{m}\right)^{p^{s-1}}\right)^{t} \\
& =\left(\left(f_{1} f_{2} \ldots f_{\eta}\right)^{p^{s-1}}\right)^{t} \\
& =\left(f_{1}^{t p^{s-1}} f_{2}^{t p^{s-1}} \ldots f_{\eta}^{t p^{s-1}}\right) \\
& =\left(f_{1}^{\alpha_{1}} f_{2}^{\alpha_{2}} \ldots f_{\eta}^{\alpha_{\eta}}\right)\left(f_{1}^{t p^{s-1}-\alpha_{1}} f_{2}^{t p^{s-1}-\alpha_{2}} \ldots f_{\eta}^{t p^{s-1}-\alpha_{\eta}}\right) \in D
\end{aligned}
$$

$w t\left[\left(x^{m p^{s-1}}-a_{1}^{m p^{s-1}}\right)^{t}\right] \leq t+1$ and $\operatorname{deg}\left(x^{m p^{s-1}}-a_{1}^{m p^{s-1}}\right)^{t}<n$. So $d_{H}(D) \leq t+1$.

5. Acknowledgments

The authors wish to sincerely thank the referees for several useful comments.

References

[1] T. G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Field Appl., 18(2012), 362-377.
[2] B. Chen, Y. Fan, L. Lin and H. Liu, Constacyclic codes over finite fields, Finite Field Appl., 18(2012), 1217-1231.
[3] H. Q. Dinh, Constacyclic codes of length p^{s} over $F_{p^{m}}+u F_{p^{m}}$, J. Algebra, 324(2010), 940-950.
[4] H. Q. Dinh and H. D. T. Nguyen, On some classes of Constacyclic codes over polynomial residue rings, Advances in Math. of comm., 6(2)(2012), 175-191.
[5] K.Guenda and T. A. Gulliver, Repeated root Constacyclic codes of length $m p^{s}$ over $F_{p^{r}}+u F_{p^{r}}+\ldots+$ $u^{e-1} F_{p^{r}}$, J. Algebra and its Appl., 14(1)(2015), 1450081(12 pages).
[6] S. Jitman and P. Udomkavanich, On the structure of constacyclic codes of length p^{s} over $F_{p^{k}}+u F_{p^{k}}+$ $\cdots+u^{m-1} F_{p^{k}}$, Int. J. Algebra, 4(11)(2010), 507-516.
[7] X.Kai, S. Zhu and P. Li, $(1+\lambda u)-$ Constacyclic codes over $\frac{F_{p}[u]}{\left\langle u^{m}\right\rangle}$, J. Franklin Institute, $\mathbf{3 4 7}(2010)$, 751-762.
[8] J. L. Massey, D. J. Costello and J. Justesen, Polynomial weights and code constructions, IEEE Trans. Inform. Theory, 19(1)(1973), 101-1

Marziyeh Beygi

Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71467-13565, Iran.
m.beygi@shirazu.ac.ir

Shohreh Namazi
Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71467-13565, Iran.

```
namazi@shirazu.ac.ir
```

Habib Sharif
Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71467-13565, Iran.
sharif@susc.ac.ir

