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CONSTACYCLIC CODES OF ARBITRARY LENGTH OVER

Fq + uFq + · · ·+ ue−1Fq

MARZIYEH BEYGI, SHOHREH NAMAZI∗ AND HABIB SHARIF

Abstract. In this article, we shall study the structure of (a + bu)−constacyclic codes of

arbitrary length over the ring R = Fq + uFq + · · ·+ ue−1Fq, where ue = 0, q is a power of a

prime number p and a, b are non-zero elements of Fq. Also we shall find a minimal spanning

set for these codes. For a constacyclic code C we shall determine its minimum Hamming

distance with some properties of Tor(C) as an a−constacyclic code over Fq.

1. Introduction

Constacyclic codes are some generalizations of cyclic codes. These codes are important in

theory of error-correcting codes and have practical applications as they can be encoded with

shift register.

The class of constacyclic codes over finite fields have been studied [1, 2]. Recently, the

structures of constacyclic codes whose lengths are powers of a prime p have been studied over

Fpm + uFpm , where u
2 = 0, by Dinh [3]. Also, Jitman and Udomkavanich, in [6], determined
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the structure of constacyclic codes of lengths ps over Fpk+uFpk+· · ·+um−1Fpk , where u
m = 0.

In [7], Kai, Zhu and Li specify the structure of (1 + λu)− Constacyclic codes over
Fp[u]
<um> .

Let Fq be a finite field with q = pr elements and p a prime number. Consider the ring

R = Fq + uFq + · · ·+ ue−1Fq, where u
e = 0. In fact, R is a finite chain ring with qe elements

and with the maximal ideal < u >. A code C of length n over R is a subset of Rn. We say

that the code is linear, if C is an R−submodule of Rn. For a given unit λ ∈ R, a code C is

said to be λ−constacyclic, if (λcn−1, c0, . . . , cn−2) ∈ C, for (c0, c1, . . . , cn−1) ∈ C.

In Rn, any n−array (c0, c1, . . . , cn−1) corresponds to a polynomial with degree less than

n, say
∑n−1

i=0 cix
i. With this corresponding, any λ−constacyclic code of length n over R is

identified with an ideal of the quotient ring R[x]
<xn−λ> .

In this paper, we are concerned with the λ−constacyclic codes of arbitrary length n over

R = Fq + uFq + · · ·+ ue−1Fq, where u
e = 0 and λ = a+ bu for some a, b ∈ F ∗

q . We completely

determine the structure of constacyclic codes of length n over R as the ideals of the principal

ideal ring R[x]
<xn−(a+bu)> . Also, we shall find a minimal spanning set for these codes. Finally,

for an (a+ bu)−constacyclic code C over R we introduce Tor(C), as an ideal of
Fq [x]

<xn−a> and

we shall show that dH(C) = dH(Tor(C)).

From now on, we suppose that n = psm, where gcd(p,m) = 1, unless stated otherwise. Let

a, b be non-zero elements in Fq and S = R[x]
<xn−(a+bu)> .

2. Some characterizations of (a+ bu)−constacyclic codes

First, note that every polynomial k(x) in R[x] can be uniquely written as k(x) = k0(x) +

uk1(x) + · · ·+ ue−1ke−1(x), where ki(x) ∈ Fq[x], 0 ≤ i ≤ e− 1.

We have the following lemma whose proof is straightforward.

Lemma 2.1. For any i, 0 ≤ i ≤ e − 1, let ki(x) be polynomials of degree less than n in

Fq[x]. Suppose that k0(x) + uk1(x) + · · ·+ ue−1ke−1(x) = 0 in S. Then k0(x) = k1(x) = . . . =

ke−1(x) = 0 in Fq[x].

Corollary 2.2. Every polynomial k(x) in S can be uniquely written as k(x) = k0(x)+uk1(x)+

· · ·+ ue−1ke−1(x), where ki(x) ∈ Fq[x], 0 ≤ i ≤ e− 1, and deg ki < n.

Consider the ring Te =
Fq [x]

<xn−a>e . Since Fq[x] is a principal ideal domain, every ideal of Te is

principal. Hence Te is a principal ideal ring. By the division algorithm in Fq[x], every element

k(x) ∈ Te with deg k < en can be uniquely written as

k(x) = k0(x) + k1(x)(x
n − a) + · · ·+ ke−1(x)(x

n − a)e−1,

where deg ki < n ( 0 ≤ i ≤ e− 1).

In the ring S we have u = b−1(xn − a). Now, applying Corollary 2.2, there exists an

isomorphism ψ from S onto Te which maps u to b−1(xn − a). In fact, we have the following

proposition.



Alg. Struc. Appl. Vol. 6 No. 1 (2019) 65-82. 67

Proposition 2.3. Let ψ : S → Te be defined by

ψ(
∑e−1

i=0 u
iki(x)) =

∑e−1
i=0 b

−i(xn − a)iki(x),

where ki(x) ∈ Fq[x], for any i, 0 ≤ i ≤ e − 1 and deg ki < n. Then ψ is a ring isomorphism

as well as an Fq[x]−homomorphism.

Proof. Obviously, ψ is an additive homomorphism. Assume that k(x) =
∑e−1

i=0 u
iki(x) and

l(x) =
∑e−1

i=0 u
ili(x) are two elements of S, where ki(x), li(x) ∈ Fq[x], deg ki < n and deg li < n,

0 ≤ i ≤ e− 1. Now,

k(x)l(x) =
e−1∑
i=0

ui(
i∑

j=0

kj(x)li−j(x))

=

e−1∑
i=0

i∑
j=0

uikj(x)li−j(x).

Assume that for any i, 0 ≤ i ≤ e − 1, hi(x) ∈ Fq[x] is coefficient of ui. we can see that

deg hi ≤ 2n− 2. In Fq[x], there exist qi(x) and si(x) such that hi(x) = (xn − a)qi(x) + si(x),

where deg si < n and deg qi < n− 2. So in S, hi(x) = buqi(x) + si(x). Hence

k(x)l(x) =
e−1∑
i=0

ui(buqi(x) + si(x))

=

e−1∑
i=0

bui+1qi(x) + uisi(x)

= s0(x) +
e−1∑
i=1

ui(bqi−1(x) + si(x)).

Thus

ψ(k(x)l(x)) = s0(x) +
∑e−1

i=1 b
−i(xn − a)i(bqi−1(x) + si(x)).

Also,

ψ(k(x))ψ(l(x)) =

e−1∑
i=0

i∑
j=0

b−i(xn − a)ikj(x)li−j(x)

=

e−1∑
i=0

b−i(xn − a)i((xn − a)qi(x) + si(x))

=

e−1∑
i=0

b−i(xn − a)i+1qi(x) + (xn − a)isi(x)

= s0(x) +

e−1∑
i=1

b−i(xn − a)i(bqi−1(x) + si(x)).

Therefore ψ(k(x)l(x)) = ψ(k(x))ψ(l(x)). This show that ψ is a ring homomorphism.

Suppose that k(x) ∈ Te and deg k < en. By the division algorithm in Fq[x],
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k(x) = k0(x) + k1(x)(x
n − a) + · · ·+ ke−1(x)(x

n − a)e−1,

where deg ki < n ( 0 ≤ i ≤ e− 1). We can see that ψ(
∑e−1

i=0 b
iuiki(x)) = k(x). Hence ψ is an

epimorphism. The rest of the proof is straightforward.

Remark 2.4. i) Since Te is a principal ideal ring, S is too. We shall now determine the unique

form of a generator of an ideal of S.
ii) Note that, here b ̸= 0. The reader should be careful that the ideals of S are different from

the ideals of the ring R[x]
<xn−a>(this ring is not a principal ideal ring).

Let a = ap
s

0 , where a0 ∈ F ∗
q ( note that a has a unique ps-th root in F ∗

q ). Thus (xn − a) =

(xm − a0)
ps . Assume that xm − a0 = f1f2 . . . fη, where fi, 1 ≤ i ≤ η, are distinct monic

irreducible polynomials in Fq[x]. Hence (xn − a) =
∏η
i=1 f

ps

i . Every ideal of Te has a monic

generator of the form
∏η
i=1 f

αi
i , 0 ≤ αi ≤ eps and a result of the following lemma is the

uniqueness of this generator.

Lemma 2.5. Let C =<
∏η
i=1 f

αi
i > and D =<

∏η
i=1 f

βi
i > be two ideals of Te, where

0 ≤ αi, βi ≤ eps. If C ⊆ D, then βi ≤ αi for any i, 1 ≤ i ≤ η and in fact, in Fq[x],∏η
i=1 f

βi
i |

∏η
i=1 f

αi
i .

Proof. Since C ⊆ D, there exist polynomials k(x) and h(x) in Fq[x] such that∏η
i=1 f

αi
i =

∏η
i=0 f

βi
i k(x) + (xn − a)eh(x), in Fq[x].

Since 0 ≤ βi ≤ eps,
∏η
i=1 f

βi
i | (xn − a)e and hence

∏η
i=1 f

βi
i |

∏η
i=1 f

αi
i in Fq[x]. Thus for any

i, 1 ≤ i ≤ η, βi ≤ αi.

For the rest of this paper, all notations ψ, S, Te and fi (1 ≤ i ≤ η) are fixed as defined

above.

Proposition 2.6. Let C be an (a + bu)−constacyclic code of length n = mps over R. Then

as an ideal of S, C has a unique generator of the form
∏η
i=1 f

αi
i , where 0 ≤ αi ≤ eps and fi

are distinct monic irreducible divisors of xm − a0 in Fq[x].

Proof. Since C ES, ψ(C)ETe (by Proposition 2.3). Hence by Lemma 2.5, ψ(C) has a unique

generator of the form
∏η
i=0 f

αi
i , where 0 ≤ αi ≤ eps. Since ψ(fi) = fi, we are done.

Remark 2.7. (i) Showing the uniqueness of the generators of constacyclic codes is open to

doubt, (see, for example [7], Theotems 4.3, 4.5 and Corollary 4.7). Dinh et. al. [4] and also

Guenda et. al. [5] seem to have used the uniqueness of the generators of constacyclic codes,

implicitely, to calculate their numbers, although they have not pointed to it.
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(ii) The authors of [4] and [5] have calculated | C |, where C is a constacyclic code, which

seems not to be very accurate (for example, when the power of the distinct monic irreducible

divisors of xm − a0 are greater than ps, the equality does not hold). We shall find the exact

number | C | , in the following corollary.

Corollary 2.8. (i) Let C =<
∏η
i=1 f

αi
i > and D =<

∏η
i=1 f

βi
i > be ideals of S, where

0 ≤ αi, βi ≤ eps. If C ⊆ D, then for any i, 1 ≤ i ≤ η, βi ≤ αi, that is, in Fq[x],
∏η
i=1 f

βi
i |∏η

i=0 f
αi
i .

(ii) The number of (a+ bu)−constacyclic codes of length n = mps over R is (eps + 1)η.

(iii) If C =<
∏η
i=1 f

αi
i > is an (a+bu)−constacyclic code over R, then | C |= qen−

∑η
i=1 αideg fi.

Proof. (i) Soppose that C ⊆ D. Thus with the previous notations, ψ(C) ⊆ ψ(D). Since

ψ(fi) = fi, the result follows by Lemma 2.5.

(ii) By the uniqueness of generators of these codes, the proof is straightforward.

(iii) Since | C |=| ψ(C) | and ψ(C) is an ideal of Te, | C |= qen−
∑η

i=1 αideg fi .

Lemma 2.9. Let C =<
∏η
i=1 f

αi
i > be an ideal of S, 0 ≤ αi ≤ eps. Then for a non-negative

integer l, < ul >⊆ C if and only if for any i, 1 ≤ i ≤ η, 0 ≤ αi ≤ lps.

Proof. < ul >⊆ C if and only if ψ(< ul >) ⊆ ψ(C) if and only if < xn − a >l⊆<
∏η
i=1 f

αi
i >

if and only if <
∏η
i=1 f

lps

i >⊆<
∏η
i=1 f

αi
i > if and only if 0 ≤ αi ≤ lps for any i, 1 ≤ i ≤ η (

by Lemma 2.5).

Let C =<
∏η
i=1 f

αi
i > be an (a + bu)−constacyclic code over R, where 0 ≤ αi ≤ eps.

Assume that there exists k, 0 ≤ k ≤ e − 1 such that kps ≤ αi ≤ (k + 1)ps, for i, 1 ≤ i ≤ η.

Let αi = kps + βi, 0 ≤ βi < ps. Then

η∏
i=1

fαi
i = (

η∏
i=1

fp
s

i )k
η∏
i=1

fβii

= (xn − a)k
η∏
i=1

fβii

= bkuk
η∏
i=1

fβii .

Obviously, g(x) =
∏η
i=1 f

βi
i divides xn − a in Fq[x] and C =< ukg(x) >.

In order to give a characterization of the generators of an (a + bu)−constacyclic code, we

construct the following polynomials gi(x) ∈ Fq[x]. Suppose that f(x) =
∏η
i=1 f

αi
i , where

0 ≤ αi ≤ eps, 1 ≤ i ≤ η. Changing the indices so that for the non-negative integers 0 =
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s0 ≤ s1 ≤ . . . ≤ se = η, 0 ≤ α1, α2, . . . , αs1 ≤ ps < αs1+1, . . . , αs2 ≤ 2ps < . . . ≤ (e − 1)ps <

αse−1+1, . . . , αse ≤ eps. Suppose that

αs1+j1 = ps + βs1+j1 , 0 < βs1+j1 ≤ ps

αs2+j2 = 2ps + βs2+j2 , 0 < βs2+j2 ≤ ps

...

αse−1+je−1 = (e− 1)ps + βse−1+je−1 , 0 < βse−1+je−1 ≤ ps.

We have

g0(x) = gcd(f(x), xn − a) = (fα1
s0+1 . . . f

αs1
s1 )(

η∏
i=s1+1

fp
s

i )

g1(x) = gcd(
f(x)

g0(x)
, g0(x)) = (f

βs1+1

s1+1 . . . f
βs2
s2 )(

η∏
i=s2+1

fp
s

i )

...

ge−2(x) = gcd(
f(x)

g0(x)g1(x) . . . ge−3(x)
, ge−3(x)) = (f

βse−2+1

se−2+1 . . . f
βse−1
se−1 )(

η∏
i=se−1+1

fp
s

i )

ge−1(x) = gcd(
f(x)

g0(x)g1(x) . . . ge−2(x)
, ge−2(x)) = (f

βse−1+1

se−1+1 . . . fβsese ).

(If sj = sj+1, we have gj(x) =
∏η
i=sj+1 f

ps

i .) We can see that ge−1(x) | · · · | g1(x) | g0(x) | xn−a
in Fq[x] and

∏η
i=1 f

αi
i =

∏e−1
i=0 gi(x). Therefore, we have the following form of the generators

of an (a+ bu)−constacyclic code over R.

Proposition 2.10. Let C be an (a + bu)−constacyclic code over R. Then C =<

g0g1 . . . ge−1 >, where gi are monic polynomials in Fq[x] such that ge−1(x) | · · · | g1(x) |
g0(x) | xn − a. Also | C |= qen−

∑e−1
i=0 ti where deg gi = ti.

Note. From now on, for an (a + bu)−constacyclic code C, the related polynomials

g0(x), g1(x), . . . , ge−1(x) with deg gi = ti, 0 ≤ i ≤ e− 1, are fixed.

Lemma 2.11. Let C =< g0g1 . . . ge−1 > be an (a+ bu)−constacyclic code over R and l be a

non-negative integer less than e. Then < ul >⊆ C if and only if gl = gl+1 = · · · = ge−1 = 1.

Proof. By Lemma 2.9, < ul >⊆ C if and only if C =<
∏η
i=1 f

αi
i >, where 0 ≤ αi ≤ lps. The

rest of the proof is similar to the disscussion preceding Proposition 2.10.

Lemma 2.12. Let C =< g0g1 . . . ge−1 > be an (a+ bu)−constacyclic code over R. If f(x) ∈
Fq[x] is a polynomial of the lowest degree such that ue−1f(x) ∈ C, then f(x) = ge−1.
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Proof. First note that g0g1 . . . ge−1 | ge−1(x
n − a)e−1. Thus ue−1ge−1 ∈ C. By the division

algorithm in Fq[x],

ge−1(x) = f(x)g(x) + s(x), where deg s < deg f .

Since ue−1ge−1(x) and ue−1f(x) are in C, ue−1s(x) ∈ C. Hence s(x) = 0. Thus ge−1(x) =

f(x)g(x). Since ue−1f(x) ∈ C, (xn − a)e−1f(x) ∈ ψ(C), where ψ is the isomorphism in

Proposition 2.3. So there exists h(x) ∈ Te, where deg h < en −
∑e−1

i=0 ti, such that (xn −
a)e−1f(x) = g0g1 . . . ge−1h(x). Since the degree of two sides of the above equality is lower than

en, we can consider this equality in Fq[x]. Hence (xn − a)e−1 = g0g1 . . . ge−2g(x)h(x). Let

D =< g0g1 . . . ge−2g > ES. Then ue−1 = (xn − a)e−1 ∈ D and g(x) | ge−2(x) | · · · | g1(x) |
g0(x) | xn − a. By Lemma 2.11 for D, g(x) = 1. Hence f(x) = ge−1.

Proposition 2.13. Let C =< g0g1 . . . ge−1 > be an (a+ bu)−constacyclic code over R. Then

ue−1ge−1 has the lowest degree between all non-zero elements of C.

Proof. Assume that d(x) ∈ C has the lowest degree between all non-zero elements of C. Let

d(x) =
∑e−1

i=0 di(x)u
i, where di(x) ∈ Fq[x] and deg di < n, 0 ≤ i ≤ e − 1. There exists

the smallest non-negative integer j, 0 ≤ j ≤ e − 1, such that deg dj = deg d. For any l,

0 ≤ l ≤ j − 1, deg dl < deg d. Now, ue−1d0(x) = ue−1d(x) ∈ C. Since d(x) has the lowest

degree in C and deg d0 = deg ue−1d0 < deg d, ue−1d0(x) = 0 and so d0(x) = 0. Also

ue−1d1(x) = ue−2d(x) ∈ C. Since d(x) has the lowest degree in C and deg d1 = deg ue−1d1 <

deg d, d1(x) = 0. Similarly, d2(x) = . . . = dj−1(x) = 0. Now ue−1dj(x) = ue−1−jd(x) ∈ C.

Since deg ue−1dj = deg dj = deg d, ue−1dj(x) has the lowest degree in C. So by Lemma 2.12,

dj(x) = ge−1(x). Hence deg d = deg dj = deg ge−1 = deg ue−1ge−1. Therefore, ue−1ge−1 has

the lowest degree between all non-zero elements of C.

3. The minimal spanning set of constacyclic codes

In this section we shall determine the minimal spanning set for an (a + bu)−constacyclic

code over R. Let us define the following notations. If hj(x), −1 ≤ j ≤ r, are polynomials in

Fq[x] such that deg hj = tj and

hr(x) | . . . | h0(x) | h−1(x),(1)

then we assign the underling set {f(x), xf(x), . . . , xt−1−t0−1f(x) | f =
∏r
i=0 hi} for the prop-

erty (1). If t−1 = t0, then the empty set ∅ will be assigned to be the underlying set.

First we provide the minimal spanning set for two special cases.

In the following proposition, we determine the minimal spanning set for all constacyclic

codes over R = Fq + uFq, where u
2 = 0. To do so, we need the following lemma whose proof

is straightforward.
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Lemma 3.1. Let R = Fq + uFq, where u
2 = 0 and g(x) be a divisor of xn − a in Fq[x]. If

g(x)k(x) = 0 for some k(x) ∈ S, then there exists h(x) ∈ Fq[x] such that deg h ≤ n − 1 and

k(x) = uh(x).

Proposition 3.2. Let C =< g0g1 > be an (a+bu)−constacyclic code over R = Fq+uFq, where

u2 = 0 and deg gi = ti, i = 0, 1. Suppose that A0 is the underlying set for g1(x) | g0(x) | xn−a
and A1 is the underlying set for g1(x) | g0(x). Then

∆ = A0
∪
uA1 = {g0g1, xg0g1, . . . , xn−t0−1g0g1}

∪
{ug1, xug1, . . . , xt0−t1−1ug1}

is a minimal spanning set for C as an R-module.

Proof. First, we show that ∆̂ = A0
∪
uA0

∪
uA1 is a linearly independent set over Fq. Suppose

that

n−t0−1∑
i=0

(ki + uk′i)x
ig0g1 +

t0−t1−1∑
j=0

djx
jug1 = 0,(2)

where ki, k
′
i and dj are in Fq, 0 ≤ i ≤ n − t0 − 1, 0 ≤ j ≤ t0 − t1 − 1. Let k(x) =∑n−t0−1

i=0 kix
i, k′(x) =

∑n−t0−1
i=0 k′ix

i and d(x) =
∑t0−t1−1

j=0 djx
j . We show that k(x), k′(x)

and d(x) are zero. In S, g1(x)[k(x)g0(x) + uk′(x)g0(x) + ud(x)] = 0. Hence by Lemma 3.1,

k(x)g0(x) + uk′(x)g0(x) + ud(x) = uh(x), where h(x) ∈ Fq[x] and deg h < n. Since in the

above equation the degree of all polynomials are lower than n, we can consider that equation

in R[x]. So k′(x)g0(x) + d(x) = h(x) and k(x)g0(x) = 0 (in Fq[x] ). Since g0(x) ̸= 0, k(x) = 0.

Therefore, by (2),

uk′(x)g0(x)g1(x) + ud(x)g1(x) = 0,(3)

in S. Now, in Fq[x] , k′(x)g0(x)g1(x) = (xn − a)s(x) + q(x), where deg q ≤ n − 1 and

deg s ≤ t1 − 1. Also g0(x) | q(x). Assume that q(x) = g0(x)q
′(x), deg q′ ≤ n− t0 − 1. Hence

in S, k′(x)g0(x)g1(x) = bus(x) + g0(x)q
′(x). Now using (3), ug0(x)q

′(x) + ud(x)g1(x) = 0. So

g0(x)q
′(x) + d(x)g1(x) = 0 (by Lemma 2.1). Hence g0(x) | d(x)g1(x). Since deg dg1 < deg g0,

d(x) = 0. So q′(x) = 0. Therefore, k′(x)g0(x)g1(x) = bus(x). Hence us(x) ∈ C. Since by

Proposition 2.13, ug1(x) has the lowest degree in C, s(x) = 0. Thus k′(x)g0(x)g1(x) = 0 in

Fq[x]. Hence k′(x) = 0. Now, | ∆̂ |= 2n − t0 − t1 is equal to the dimension of C as a vector

space over Fq (by Corollary 2.8, part (iii)). So ∆̂ is an spanning set for C as an Fq−module.

Hence ∆ generate C as an R−module. Also since ∆̂ is linearly independent, ∆ is a minimal

spanning set for C.

In the following lemma, we determine the minimal spanning set for the constacyclic code

C =< ukg(x) > over R = Fq + uFq + · · ·+ ue−1Fq, where u
e = 0 and g(x) ∈ Fq[x] is a divisor
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of xn−a (see the discussion after Lemma 2.9). This lemma is used in the proof of Proposition

3.8.

Lemma 3.3. Let C =< ukg(x) > be an (a+bu)−constacyclic code over R, where g(x) | xn−a,
0 ≤ k ≤ e−1 and deg g = t. Suppose that B0 is the underlying set for 1 | g(x) | xn−a and B1

is the underlying set for 1 | g(x), if 0 ≤ k ≤ e−2 and ∅, if k = e−1. Then Ω = ukB0
∪
uk+1B1

is a minimal spanning set for C as an R-module. Also, | C |= q(e−k)n−t.

Proof. First, we show that Ω is a spanning set. Let c(x) ∈ C. Thus c(x) = ukg(x)l(x) for

some l(x) ∈ S. If deg l ≤ n− t− 1, then we are done. Suppose that deg l ≥ n− t. In R[x],

l(x) = (x
n−a
g(x) )q(x) + s(x), where deg s ≤ n− t− 1 and deg q ≤ t− 1.

Now in S,

c(x) = ukg(x)((
xn − a

g(x)
)q(x) + s(x))

= ukq(x)(xn − a) + ukg(x)s(x)

= buk+1q(x) + ukg(x)s(x).

(Note that if k = e− 1, then buk+1q(x) = 0.) Hence

Ω = {ukg, xukg, . . . , xn−t−1ukg, uk+1, xuk+1, . . . , xt−1uk+1}
is a spanning set for C if 0 ≤ k ≤ e− 2. Also if k = e− 1, then

Ω = {ue−1g, xue−1g, . . . , xn−t−1ue−1g}
is a spanning set for C. We claim that Ω is a minimal spanning set. For, it is enough to show

that ∑n−t−1
i=0 (

∑e−k−1
j=0 ljiu

j)xiukg +
∑t−1

i′=0(
∑e−k−2

j′=0 dj′i′u
j′)xi

′
uk+1 = 0,

implies that all coefficients lji and dj′i′ are zero in Fq[x]. Consider polynomials lj(x) =∑n−t−1
i=0 ljix

i and dj′(x) =
∑t−1

i′=0 dj′i′x
i′ , where 0 ≤ j ≤ e− k− 1 and 0 ≤ j′ ≤ e− k− 2. Thus

in S,
(
∑e−k−1

j=0 ujlj(x))u
kg(x) + (

∑e−k−2
j′=0 uj

′
dj′(x))u

k+1 = 0.

Since the degree of all polynomials in the above equality is lower than n, by applying Lemma

2.1, we have,

l0(x)g(x) = 0 and lj(x)g(x) + dj−1(x) = 0, in Fq[x], 1 ≤ j ≤ e− k − 1.

Since g(x) ̸= 0, l0(x) = 0. Also deg (ljg) > deg dj−1 implies that lj(x) = dj−1(x) = 0.

To prove the last statement of the lemma, note that ψ(C) =< (xn − a)kg(x) > and

| ψ(C) |= qen−kn−t. Hence | C |= q(e−k)n−t.

For every positive integer j, set Tj =
Fq [x]

<xn−a>j . If i ≤ j, then clearly Ti is a homomorphic

image of Tj . Consider the natural ring epimorphism πji : Tj −→ Ti with kerπji =
<xn−a>i

<xn−a>j .

Note that for polynomials h1(x) and h2(x) in Fq[x], if h1(x) ≡ h2(x) (mod (xn − a)j), then
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πji(h1(x)) ≡ πji(h2(x)) (mod (xn − a)i). Obviously, every h(x) ∈ Tj has a unique representa-

tion h(x) =
∑j−1

l=0 hl(x)(x
n − a)l, where hl(x) ∈ Fq[x] and deg hl < n for any l, 0 ≤ l ≤ j − 1.

Thus we have

πji(h(x)) = πji(

j−1∑
l=0

hl(x)(x
n − a)l)

=
i−1∑
l=0

hl(x)(x
n − a)l.

For j ≥ 2, consider the finite chain ring Rj = Fq+ujFq+ · · ·+uj−1
j Fq, where u

j
j = 0 and the

principal ideal rings Sj =
Rj [x]

<xn−(a+buj)>
. In the following proposition, we show that if i ≤ j,

then Si is a homomorphic image of Sj .

Proposition 3.4. Let i and j be two integers such that 1 < i ≤ j. Then there exists an

epimorphism βji : Sj −→ Si such that βji(
∑j−1

l=0 hl(x)u
l
j) =

∑i−1
l=0 hl(x)u

l
i, where hl(x) ∈ Fq[x]

and deg hl < n for any l, 0 ≤ l ≤ j − 1. Also kerβji is the ideal of Sj generated by uij.

Proof. Similar to the proof of Proposition 2.3, consider ψj : Sj → Tj by

ψj(
∑j−1

l=0 u
l
jkl(x)) =

∑j−1
l=0 b

−l(xn − a)lkl(x),

where kl(x) ∈ Fq[x], for any l, 0 ≤ l ≤ j − 1 and deg kl < n. Now we set βji = ψ−1
i πjiψj in

Sj
ψj−→ Tj

πji−→ Ti
ψ−1
i−→ Si.

We can see that βji is an epimorphism and kerβji = ψ−1
j (kerπji). Hence kerβji =< uij >.

Furthermore, βji(uj) = ui. Since πji((x
n − a)l) = 0 for all l, l ≥ i,

βji(u
l
j) =

{
0 if l ≥ i

uli if l < i
.

Every element of Sj has a unique representation
∑j−1

l=0 u
l
jhl(x), where hl(x) ∈ Fq[x], for any l,

0 ≤ l ≤ j − 1 and deg hl < n. Thus βji(
∑j−1

l=0 hl(x)u
l
j) =

∑i−1
l=0 hl(x)u

l
i.

Corollary 3.5. If 1 < i ≤ j, then
Sj

<uij>
≃ Si.

Lemma 3.6. Suppose that 1 < i ≤ j and h(x) is a polynomial in Fq[x] such that deg h < ni.

Then βji(h(x)) = h(x).

Proof. Since deg h < ni, there exist polynomials hl(x) ∈ Fq[x], 0 ≤ l ≤ i − 1, of degree

less than n such that h(x) =
∑i−1

l=0(x
n − a)lhl(x). In Sj , h(x) =

∑i−1
l=0 b

luljhl(x) and hence

βji(h(x)) = h(x).

Lemma 3.7. Let C =<
∏η
l=1 f

αl
l > be an (a+bu)−constacyclic code over Rj, where 0 ≤ αl ≤

jps. If i ≤ j and < uij >⊆ C, then βji(C) as an ideal of Si generated by
∏η
l=1 f

αl
l .
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Proof. Since < uij >⊆ C, by Lemma 2.9, 0 ≤ αl ≤ ips for any l, 1 ≤ l ≤ η. Hence

deg (
∏η
l=1 f

αl
l ) < ni. So βji(

∏η
l=1 f

αl
l ) =

∏η
l=1 f

αl
l , by Lemma 3.6. Since C contains kerβji,

we can see that βji(C) is an ideal of Si generated by βji(
∏η
l=1 f

αl
l ).

With the previous notations, let R3 = Fq + uFq + u2Fq and R2 = Fq + vFq, where u
3 = 0

and v2 = 0. Consider S3 =
R3[x]

<xn−(a+bu)> and S2 =
R2[x]

<xn−(a+bv)> .

Proposition 3.8. Let g1(x) | g0(x) | xn − a and deg gi = ti, i = 0, 1, and let k0(x), k1(x) ∈
Fq[x], deg k0 ≤ n− t0 − 1 and deg k1 ≤ t0 − t1 − 1. If in S3,

u2k0(x)g0g1 + u2k1(x)g1 = 0,

then k0(x) = k1(x) = 0 in Fq[x].

Proof. If g0(x) = xn − a, then the result holds by Lemma 2.1. Let g0(x) ̸= xn − a and

C =< g0g1 > be the (a+ bu)−constacyclic code over R3. Consider

A0 = {g0g1, xg0g1, . . . , xn−t0−1g0g1},

A1 = {g1, xg1, . . . , xt0−t1−1g1},

A2 = {1, x, . . . , xt1−1}.

We show that ∆ = A0
∪
uA1

∪
u2A2 is a spanning set for C as an R3−module. Clearly, every

element of ∆ is in C. Suppose that β = β32 : S3 −→ S2 is the epimorphism in Proposition

3.4. Since deg (g0g1) < 2n, by Lemma 3.7, β(C) is the ideal of S2 generated by g0g1. By

Proposition 3.2, the set

{g0g1, xg0g1, . . . , xn−t0−1g0g1}
∪
{vg1, xvg1, . . . , xt0−t1−1vg1}

is a minimal spanning set for β(C). Also by Lemma 3.3, the set {u2, xu2, . . . , xn−1u2} is a

minimal spanning set for kerβ =< u2 >. Assume that c(x) ∈ C. Hence

c(x) =
∑n−t0−1

i=0 rix
ig0g1 +

∑t0−t1−1
j=0 sjx

jug1 +
∑n−1

l=0 dlx
lu2,

where ri, sj ∈ R3, 0 ≤ i ≤ n− t0 − 1, 0 ≤ j ≤ t0 − t1 − 1 and dl ∈ Fq, 0 ≤ l ≤ n− 1. Now, we

shall show that u2xr, t1 ≤ r ≤ n− 1, are in the R3−module spanned by ∆. We have

u2xt1 = u2[g1(x) + l(x)] = u2g1(x) + u2l(x), where l(x) ∈ Fq[x] and deg l < t1.

Thus u2xt1 is in the R3−module spanned by ∆. Since uxig1(x) ∈ ∆ for any i, 0 ≤ i ≤ t0−t1−1,

inductively, for i, 0 ≤ i ≤ t0 − t1 − 1, u2xt1+i = u2xig1(x) + u2xil(x) is generated by elements

of ∆.

Now, by the division algorithm, there exist k(x) ∈ Fq[x] with deg k < t0 and b0, b1, · · · , bj in

Fq such that

u2xt0+j = u2[bjx
jg0(x) + bj−1x

j−1g0(x) + · · ·+ b0g0(x) + k(x)],

where 0 ≤ j ≤ n−t0−1. We saw that u2k(x) is in the R3−module generated by ∆. It is enough
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to prove that u2xig0(x), 0 ≤ i ≤ j, is generated by the elements of ∆. Clearly, uxig0(x) ∈ C.

Thus β(uxig0(x)) = vxig0(x) ∈ β(C). Hence there exist r′i, s
′
j ∈ R3, 0 ≤ i ≤ n − t0 − 1 and

0 ≤ j ≤ t0 − t1 − 1 such that

uxig0(x)− (
∑n−t0−1

i=0 r′ix
ig0g1 +

∑t0−t1−1
j=0 s′jx

jug1) ∈ kerβ =< u2 >.

Hence u2xig0(x) =
∑n−t0−1

i=0 ur′ix
ig0g1+

∑t0−t1−1
j=0 s′jx

ju2g1. Therefore, ∆ is a spanning set for

C. Consider ∆̂ =
∪2
l=0

∪2
j=l u

jAl. Since ∆ is a spanning set for C as an R3−module, ∆̂ is a

spanning set for C as an Fq−module. Now | ∆̂ |= q3n−t0−t1 is equal to the dimension of C as

a vector space, by Proposition 2.10. So ∆̂ is a linearly independent set over Fq. Therefore,

the result holds.

Notation. Suppose that gi(x), i = 0, 1, 2, are monic polynomials in Fq[x] such that g2(x) |
g1(x) | g0(x) | xn − a and deg gi = ti. We set

A0, the underlying set for ”g2(x) | g1(x) | g0(x) | xn − a”,

A1, the underlying set for ”g2(x) | g1(x) | g0(x)” and

A2, the underlying set for ”g2(x) | g1(x)”.

Proposition 3.9. Let C =< g0g1g2 > be an (a + bu)−constacyclic code over R3. Then

Γ =
∪2
j=0 u

jAj is a minimal spanning set for C.

Proof. Suppose that deg gi = ti, 0 ≤ i ≤ 2. We shall show that Γ̂ =
∪2
l=0

∪2
j=l u

jAl is a

linearly independent subset of S3 over Fq. Assume that in S3,∑2
l=0

∑2
j=l

∑tl−1−tl−1
i=0 zljiu

jxi
∏2
r=l gr = 0, where t−1 = n and zlji ∈ Fq.

In Fq[x], set klj =
∑tl−1−tl−1

i=0 zljix
i. Hence in S3,

(k00(x) + uk01(x) + u2k02(x))g0g1g2 + (k11(x) + uk12(x))ug1g2 + k22(x)u
2g2 = 0.

Thus there exist h0(x), h1(x) and h2(x) in Fq[x] such that

k00(x)g0g1g2 = (xn − a)h0(x)

k01(x)g0g1g2 + k11(x)g1g2 = (xn − a)h1(x)− bh0(x)

k02(x)g0g1g2 + k12(x)g1g2 + k22(x)g2 = (xn − a)h2(x)− bh1(x).

By the third equality, g2(x) | h1(x) and by the second equality, g1(x)g2(x) | h0(x). Hence

(xn−a) | k00(x)g0(x). Since deg k00g0 < n, k00(x) = h0(x) = 0. So k01(x)g0g1g2+k11(x)g1g2 =

(xn − a)h1(x). Therefore, k01(x)g0g1 + k11(x)g1 = (xn − a)h1(x)g2
. Now, in S3, u

2k01(x)g0g1 +

u2k11(x)g1 = 0. By Proposition 3.8, k01(x) = k11(x) = 0. Hence h1(x) = 0. So in the third

equality, g1(x) | k22(x)g2(x). Since deg k22g2 < deg g1, k22(x) = 0. Hence k02(x)g0g1g2 +

k12(x)g1g2 = (xn − a)h2(x). By the division algorithm in Fq[x],

h2(x) = g2(x)q(x) + s(x), where deg s < deg g2.
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So in S3, uk02(x)g0g1g2+uk12(x)g1g2 = u2g2(x)q(x)+u
2s(x). Thus u2s(x) ∈ C. Since deg s <

deg g2, by Proposition 2.13, s(x) = 0. Hence k02(x)g0g1g2 + k12(x)g1g2 = (xn − a)g2(x)q(x).

So k02(x)g0g1 + k12(x)g1 = (xn − a)q(x). Now, in S3, u
2k02(x)g0g1 + u2k12(x)g1 = 0. By

Proposition 3.8, k02(x) = k12(x) = 0. Therefore, Γ̂ is linearly independent over Fq. So Γ is a

minimal set over R3. Since the number of elements of Γ̂ is equal to the dimension of C, Γ̂ is a

basis for C over Fq. Thus Γ is a minimal spanning set for C over R3.

Now, we shall determine the minimal spanning set for an (a+ bu)−constacyclic code C over

R = Fq + uFq + · · ·+ ue−1Fq, where u
e = 0.

Let gi, 0 ≤ i ≤ e − 1, be monic polynomials in Fq[x] such that ge−1 | . . . | g1 | g0 | xn − a.

According to (1), suppose that A0 is the underlying set for ”ge−1 | . . . | g1 | g0 | xn − a” and

each Aj , 1 ≤ j ≤ e − 1 is the underlying set for ”ge−1 | . . . | gj | gj−1”. Then we prove the

following result.

Proposition 3.10. Let C =< g0g1 . . . ge−1 > be an (a+ bu)−constacyclic code over R. Then

Γ =
∪e−1
j=0 u

jAj is a minimal spanning set for C as an R−module. Also, | C |= qen−
∑e−1

j=0 tj ,

where deg gj = tj, 0 ≤ j ≤ e− 1.

Proof. For e = 2, we have Proposition 3.2. Inductively, similar to the proof of Proposition 3.8,

for polynomials kj(x), 0 ≤ j ≤ i−2 and 3 ≤ i ≤ e, we can prove that in Si, k0(x)g0g1 . . . gi−2+

k1(x)g1g1 . . . gi−2 + · · · + ki−2(x)gi−2 = 0 implies that k0(x) = k1(x) = ki−2(x) = 0 in Fq[x],

and similar to the proof of Proposition 3.9, we are done.

4. The minimum Hamming distance of constacyclic codes

In this section, we shall determine the minimum distance of an (a+ bu)−constacyclic code

over R. We correspond to any constacyclic code C over R, an ideal Tor(C) of T1 with the

same minimum Hamming distance of C.

Lemma 4.1. Let h1(x) and h2(x) be two elements of Fq[x]. Suppose that for some i, 0 ≤ i ≤
e− 1, uih1(x) ≡ uih2(x) ( mod (xn− (a+ bu))), in R[x]. Then h1(x) ≡ h2(x) ( mod (xn− a))

in Fq[x].

Proof. In R[x],

ui(h1(x)− h2(x)) = (xn − (a+ bu))(k0(x) + uk1(x) + · · ·+ ue−1ke−1(x)),
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where kj(x) ∈ Fq[x] (0 ≤ j ≤ e− 1). Hence in Fq[x],

0 = (xn − a)k0(x)

0 = (xn − a)k1(x)− bk0(x)

...

0 = (xn − a)ki−1(x)− bki−2(x)

h1(x)− h2(x) = (xn − a)ki(x)− bki−1(x).

By the first i relations, we deduce that k0(x) = k1(x) = . . . = ki−1(x) = 0. So h1(x)−h2(x) =
(xn − a)ki(x) for i, 0 ≤ i ≤ e− 1. Hence h1(x) ≡ h2(x) ( mod (xn − a)) in Fq[x].

Lemma 4.2. Let h1(x) and h2(x) be two elements of Fq[x]. Then h1(x) ≡ h2(x) ( mod

(xn − a)) in Fq[x] if and only if ue−1h1(x) ≡ ue−1h2(x) ( mod (xn − (a+ bu))) in R[x].

Proof. ⇒) Assume that h1(x) ≡ h2(x) ( mod (xn−a)) in Fq[x]. Hence there exists k(x) ∈ Fq[x]

such that h1(x)−h2(x) = (xn−a)k(x). So in R[x], ue−1h1(x)−ue−1h2(x) = ue−1(xn−a)k(x).
Since xn − a ≡ bu ( mod (xn − (a+ bu))), ue−1h1(x) ≡ ue−1h2(x) ( mod (xn − (a+ bu))).

⇐) The proof follows by Lemma 4.1.

Suppose that C is an (a+ bu)−constacyclic code over R. Regarding Lemma 4.2, let Tor(C)

be the set of all polynomials h(x) in T1 such that ue−1h(x) ∈ C. Clearly Tor(C) is an ideal

of T1. Hence Tor(C) is generated by a unique monic divisor k(x) of xn − a in Fq[x]. In fact,

Tor(C) is an a−constacyclic code over Fq. If we consider C as an R-submodule of Rn, we can

write

Tor(C) = {h = (h0, h1, . . . , hn−1) ∈ Fnq | ue−1h ∈ C}.

Recall that the Hamming weight of v ∈ Rn, is defined to be the number of non-zero

components of v. We denote by dH(C), the minimum Hamming distance of a code C. We

shall show that dH(C) = dH(Tor(C)).

Lemma 4.3. Let C be an (a+ bu)−constacyclic code over R. Then dH(C) = dH(Tor(C)).

Proof. Since ue−1Tor(C) ⊆ C, dH(C) ≤ dH(u
e−1Tor(C)). Clearly dH(Tor(C)) =

dH(u
e−1Tor(C)). Therefore dH(C) ≤ dH(Tor(C)). Assume that

v = (
∑e−1

i=0 v0iu
i,
∑e−1

i=0 v1iu
i, . . . ,

∑e−1
i=0 vn−1,iu

i)
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is a non-zero element of C, vji ∈ Fq, 0 ≤ j ≤ n − 1 and 0 ≤ i ≤ e − 1. Obviously, we

can write v =
∑e−1

i=0 (v0i, v1i, . . . , vn−1,i)u
i. Suppose that l is the lowest integer such that

wl = (v0l, v1l, . . . , vn−1,l) ̸= 0. Hence ue−1−lv = ue−1wl. Since u
e−1−lv ∈ C, ue−1wl ∈ C. So

wl ∈ Tor(C). Thus wtH(wl) ≥ dH(Tor(C)). Therefore,

wtH(v) ≥ wtH(u
e−1−lv) = wtH(u

e−1wl) = wtH(wl) ≥ dH(Tor(C)).

This shows that dH(C) ≥ dH(Tor(C)).

Proposition 4.4. Let C =< g0g1 . . . ge−1 > be an (a + bu)−constacyclic code over R. Then

Tor(C) is the ideal of T1 generated by ge−1.

Proof. Assume that h(x) is the monic polynomial of the lowest degree in Tor(C). Thus h(x)

is a generator of Tor(C) as an ideal of T1. Since ue−1h(x) ∈ C, h(x) = ge−1(x) by Lemma

2.12.

Example 4.5. Let R = F2 + uF2 + u2F2, where u
3 = 0 and S = R[x]

<x15−(1+u)>
. In F2[x],

x15−1 = f1f2f3f4f5, where f1 = x+1, f2 = x2+x+1, f3 = x4+x3+x2+x+1, f4 = x4+x3+1

and f5 = x4 + x+1 are irreducible polynomials. Now, consider the (1 + u)−constacyclic code

C =< f21 f2f
3
4 >. We can see that | C |= 219 and with the notations of Proposition 2.10,

g0 = f1f2f4, g1 = f1f4 and g2 = f4. Since Tor(C) is an ideal of F2[x]
<x15−1>

, it is the cyclic

Hamming code generated by f4 over F2. Therefore, dH(C) = dH(Tor(C)) = 3.

With the previous notations, we see that dH(C) = dH(Tor(C)). Then we examine the

a−constacyclic codes over Fq. Recall that, for a polynomial f(x) ∈ Fq[x], the number of

non-zero coefficients of f(x) in Fq[x] is called the weight of f(x) and is denoted by wt[f(x)].

Lemma 4.6. Suppose that n = mps and k(x) = f(x)(xmp
s−1 −c)t, where c ∈ F ∗

q , f(x) ∈ Fq[x]

and deg f < mps−1. If t ≤ p− 1, then wt[k(x)] = (t+ 1).wt[f(x)] and deg k < n.

Proof. Suppose that wt[f(x)] = l and f(x) = ai1x
i1 + ai2x

i2 + · · · + ailx
il , where for any r,

1 ≤ r ≤ l, air ̸= 0. We have

k(x) =

t∑
j=0

(tj)c
t−j(ai1x

i1+jmps−1
+ ai2x

i2+jmps−1
+ · · ·+ ailx

il+jmp
s−1

).(4)

Since for any r, 1 ≤ r ≤ l, ir ≤ deg f < mps−1,

ir + jmps−1 < mps−1 + jmps−1 = (1 + j)mps−1 ≤ mps = n.

So deg k < n. Now, t ≤ p− 1 implies that (tj) is a non-zero element of Fq. Hence (tj)c
t−j ̸= 0.

Also, in the righthand side of (4) the powers of x are different. So wt[k(x)] = (t+1).wt[f(x)].
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Assume that k(x) = fα1
1 fα2

2 . . . f
αη
η , (0 ≤ αj ≤ ps) and a has an n−th root a1 ∈ F ∗

q . Suppose

that r is a positive integer such that

i) For any j, 1 ≤ j ≤ r, αj = (p− 1)ps−1 + dj and 0 < dj ≤ ps−1,

ii) For any j, r + 1 ≤ j < η, αj ≤ (p− 1)ps−1.

Then we have the following proposition.

Proposition 4.7. By the above notations, consider the a−constacyclic code D =< k(x) >

▹T1. Then

dH(D) ≤ p.wt[fd11 fd22 . . . fdrr ].

Proof. Let D ̸= 0 and l(x) = fd11 fd22 . . . fdrr . We have deg l < mps−1. Thus

deg (l(x)(xmp
s−1 − amp

s−1

1 )p−1) < mps−1 +mps−1(p− 1) ≤ mps = n.

If h(x) = l(x)(xmp
s−1 − amp

s−1

1 )p−1, then wt[h(x)] in Fq[x] is equal to the weight of h(x) in T1.

Now,

h(x) = l(x)(xmp
s−1 − amp

s−1

1 )p−1

= l(x)(f1f2 . . . fη)
(p−1)ps−1

= (f
(p−1)ps−1+d1
1 . . . f (p−1)ps−1+dr

r f
αr+1

r+1 . . . f
αη
η )(f

(p−1)ps−1−αr+1

r+1 . . . f
(p−1)ps−1−αη
η )

= k(x)(f
(p−1)ps−1−αr+1

r+1 . . . f
(p−1)ps−1−αη
η ) ∈ D.

By Lemma 4.6, wt[h(x)] = p.wt[l(x)]. So dH(D) ≤ p.wt[l(x)].

Lemma 4.8. Suppose that D =< k(x) > is an a−constacyclic code over Fq, where k(x) |
xn−a. If f(x) is a non-zero element of D, then there exists h(x) ∈ Fq[x] with deg h < n−deg k
such that p(x) ≡ h(x)k(x) (mod (xn − a)).

Proof. The proof is straightforward.

Proposition 4.9. [8, Theorem 6.3] For any polynomial p(x) over GF (pr), the Galois field of

order pr, any non-zero element c of GF (pr), and any non-negative integers n and N ,

wt[p(x)(xn − c)N ] ≥ wt[(xn − c)N ].wt[p(x) mod (xn − c)].

�

Proposition 4.10. Let D =< k(x) > be an a−constacyclic code over Fq, where k(x) | xn−a.
If a1 is an n−th root of a in Fq and i is the largest non-negative integer such that (x−a1)i | k(x)
, then

dH(D) ≥ min{wt[(x− a1)
i+j ] | 0 ≤ j < n− deg k}.
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Proof. Assume that f(x) is a non-zero element of D. Thus there exists l(x) ∈ Fq[x] with

deg l < n − deg k such that f(x) ≡ l(x)k(x) (mod (xn − a)) by Lemma 4.8. Let j be the

largest non-negative integer such that (x − a1)
j | l(x). Now the weight of f(x) in T1 is equal

to wt[k(x)l(x)] in Fq[x] and by Proposition 4.9, we have

wt[k(x)l(x)] = wt[(x− a1)
i+j k(x)l(x)

(x− a1)i+j
]

≥ wt[(x− a1)
i+j ].wt[

k(x)l(x)

(x− a1)i+j
mod(x− a1)]

≥ wt[(x− a1)
i+j ].

So dH(D) ≥ min{wt[(x− a1)
i+j ] | 0 ≤ j < n− deg k}.

Example 4.11. Consider C =< u(x−1)2 > as an (1+u)−constacyclic code over R = F3+uF3

(u2 = 0) of length 6 (C ▹ R[x]
<x6−(1+u)>

). We shall show that dH(C) = 2. Obviously, Tor(C) is

the cyclic code of length 6 over F3 generated by (x− 1)2. By Proposition 4.10, dH(Tor(C)) ≥
min{wt[(x − 1)α] | 2 ≤ α < 6}. So, dH(C) = dH(Tor(C)) ≥ 2. Also x3 − 1 is a codeword in

Tor(C) of weight 2. So the equality does hold.

Proposition 4.12. Suppose that a1 ∈ F ∗
q is an n−th root of a. Let D =< fα1

1 fα2
2 . . . f

αη
η >,

be an a−constacyclic code over Fq, where f1, f2, . . . , fη are the monic irreducible divisors of

xm − a0. If there exists t such that t ≤ p− 1 and αj ≤ tps−1 for any j, then dH(D) ≤ t+ 1.

Proof. We have

(xmp
s−1 − amp

s−1

1 )t = ((xm − am1 )p
s−1

)t

= ((f1f2 . . . fη)
ps−1

)t

= (f tp
s−1

1 f tp
s−1

2 . . . f tp
s−1

η )

= (fα1
1 fα2

2 . . . f
αη
η )(f tp

s−1−α1
1 f tp

s−1−α2
2 . . . f

tps−1−αη
η ) ∈ D,

wt[(xmp
s−1 − amp

s−1

1 )t] ≤ t+ 1 and deg (xmp
s−1 − amp

s−1

1 )t < n. So dH(D) ≤ t+ 1.
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