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CHARACTERIZING SOME GROUPS WITH NILPOTENT DERIVED

SUBGROUP

AZAM KAHENI∗ AND FARANGIS JOHARI

Abstract. In this paper, groups with trivial intersection between Frattini and derived sub-

groups are considered. First, some structural properties of these groups are given in an

important special case. Then, some family invariants of each n-isoclinism family of such

groups are stated. In particular, an explicit bound for the order of each center factor group

in terms of the order of its derived subgroup is also provided.

1. Introduction and Preliminaries

The classification of all finite groups having cyclic Sylow subgroups is done by Holder,

Burnside and Zassenhaus. They have proved the following theorem.

Theorem 1.1. [8, 10.1.10] If G is a finite group all of whose Sylow subgroups are cyclic, then

G has a presentation

G = ⟨a, b|am = 1 = bn, b−1ab = ar⟩,(1.1)

where rn ≡ 1(mod m), m is odd, 0 ≤ r < m, and m and n(r − 1) are coprime.

DOI: 10.29252/as.2019.1353

MSC(2010): Primary: 20D25; Secondary: 20D10, 20D20

Keywords: Frattini subgroup, Soluble group, Sylow subgroup.

Received: 31 Oct 2018, Accepted: 05 April 2019.

∗Corresponding author

c⃝ 2019 Yazd University.

55



56 Alg. Struc. Appl. Vol. 5 No. 1 (2019) 55-63.

Conversely in a group with such a presentation all Sylow subgroups are cyclic.

This means that a finite group whose Sylow subgroups are cyclic is an extension of one

cyclic group by another.

After a while, some authors focussed on finite soluble groups whose Sylow subgroups are

abelian. These groups are called A-groups and were first studied by P. Hall [4]. Interest in

A-groups also broadened due to an important relationship to varieties of groups discussed in

[7]. Some results were obtained on this subject is as follows. Every subgroup, quotient group,

and direct product of A-groups are A-groups. A finite nilpotent group is an A-group if and

only if it is abelian. Moreover, Walter [10] proved that a non-abelian finite simple group is an

A-group if and only if it is isomorphic to the first Janko group or to PSL(2, q) where q > 3

and either q = 2n or q ≡ 3, 5 mod 8. The important theorem on A-groups, which was stated

without proof by P. Hall[4], is proved by Taunt[9].

Theorem 1.1. Let G be an A-group. Then the meet of the center and the derived subgroup

of G is the identity.

Although Taunt [9] showed that G′ ∩ Z(G) = 1, for each A-group G, but the converse of

Taunt’s statement is not true in general. A counterexample is the simple group PSL(2, 17).

Note that, the Frattini subgroup of PSL(2, 17) is trivial. Therefore, the meet of the center

and the derived subgroup of PSL(2, 17) is trivial whereas it is not an A-group [10]. Hence,

one of the problems that the paper follows is finding a set of groups satisfying the converse

of Taunt’s statement. More precisely, since, φ(G) ∩ G′ = 1 implies that G′ ∩ Z(G) = 1, we

will focus on the family of groups in which φ(G) ∩ G′ = 1, for each group G, and then try

to obtain some structural properties of A-groups in this family of groups. In particular, an

explicit bound for the order of each center factor group in terms of the order of its derived

subgroup is also provided.

We begin by introducing a slight generalization of the concept of upper central series of a

group and some other concepts which are needed later.

Let G be any group and α be an ordinal number. The terms ζαG of the upper central series

of G are defined by the usual rules

ζ0(G) = 1 and ζα+1G/ζαG = ζ(G/ζαG)

together with the completeness condition

ζλG = ∪α<λζαG

where λ is a limit ordinal. Since the cardinality of G cannot be exceeded, there is an ordinal β

such that ζβG = ζβ+1G = . . . , a terminal subgroup called the hypercenter of G. It is sometimes

convenient to call ζαG the α-center of G.
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Now, we recall that the notion of n-isoclinism and some related results [5].

The equivalence relation n-isoclinism partitions the class of all groups into families. Ac-

cording to this notion, two groups G and H are n-isoclinic if there exist isomorphisms

α : G
Zn(G) →

H
Zn(H) and β : γn+1(G) → γn+1(H),

such that β([g1, g2, . . . , gn+1]) = [h1, h2, . . . , hn+1], where gi ∈ G, hiZn(H) = α(giZn(G)), for

each 1 ≤ i ≤ n + 1. In this case, we write G ∼n H. 1-isoclinic groups G and H are briefly

called isoclinic and shown by G ∼ H.

Any quantity depending on a variable group and which is the same for any two groups of the

same family is called family invariant. Thus the derived subgroup, the central quotient group

and also the intersection of derived subgroup and center subgroup are some family invariants

in each isoclinism family. A group S in which Z(S) ⊆ γn+1(S) is called an n-stem group and

1-stem group is briefly called stem group.

One of the problems that we like to follow is given an explicit bound for the order of

each center factor group in terms of the order of its derived subgroup. There are numerous

interesting bound which obtained by some authors. A famous Theorem of P. Hall [8, p.423]

says that the factor group G/Z2(G) is finite, whenever G is an arbitrary group with finite

derived subgroup. Therefore, the finiteness of G′ implies that the finiteness of G, when Z2(G)

is trivial. Herzog et al.[6] assumed a stronger condition, namely, the Frattini subgroup and

the center of G is trivial and proved that not only such group G is finite but also there exists

an explicit bound for the order of G in terms of the order of G′. In fact, they can prove

that |G| ≤ |G′|3 for each group G with finite derived subgroup in which φ(G) = Z(G) = 1.

Furthermore, they conjectured that |G| ≤ |G′|2 for such groups. Halasi and Podoski [2] proved

this conjecture and extended it by showing the following result.

Theorem 1.2. Let G be a group such that G′ is finite and φ(G) = 1. Then

|G/Z(G)| ≤ |G′|2.

Equality holds if and only if G is abelian.

We are now in a position to state the major results of this paper.

Theorem A. Let G be a finite group such that G′ is nilpotent. Then G is an A-group and

φ(G) is central if and only if φ(G) ∩G′ = 1.

Theorem B. Let G be a group such that φ(G) ∩G′ = 1 and G′ be finite nilpotent. Then

(i) Z(G) is the intersection of all non-normal maximal subgroups of G,

(ii) Z(G) is the hypercenter of G and G/Z(G) is finite and also φ(G/Z(G)) = 1,

(iii) G = HG′, where G′ is elementary abelian, H is abelian, H ∩G′ = 1, and Z(G) ⊆ H,

(iv) every stem group that is isoclinic to G is an A-group.
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The next result generalizes Theorem 1.2 and the main result of [1].

Theorem C. Let G be a non abelian group such that G′ is finite and φ(G) ∩ G′ = 1. If GN

is the smallest normal subgroup of G such that G/GN is nilpotent, then

|G′| ≤ |G/Z(G)| < |G′||GN |.

2. Main results

In 1904, Schur proved that the finiteness of G/Z(G) for each group G implies that the

finiteness of G′. The converse of this statement is not true in general. Infinite extra-special

p-groups are desirable counterexamples. Now, we give a set of groups satisfying the converse

of Schur’s theorem.

Lemma 2.1. Let G be a group such that φ(G)∩G′ = 1. Then Z(G) is the hypercenter of G.

Moreover, if G′ is finite, then G/Z(G) is finite.

Proof. It is easy to see that Z(G) ∩ G′ is trivial, because of φ(G) ∩ G′ = 1. Let x ∈ Z2(G).

Then for each g ∈ G we will have [x, g] ∈ Z(G) ∩ G′, and so Z2(G) = Z(G). Now, one can

obtain the result by P. Hall’s Theorem [8, p.423].

Following the method used in the process of the proof of [2, Lemma 2.1], one can obtain

the following result.

Proposition 2.2. Let G be a group such that φ(G) ∩G′ = 1. Then Z(G) is the intersection

of all non-normal maximal subgroups of G and hence φ(G) ⊆ Z(G). Moreover, Z(G/Z(G)) is

trivial.

Proof. Let D be the intersection of all non-normal maximal subgroups of G. It is clear that D

is a normal subgroup and every non-normal maximal subgroup contains Z(G). Furthermore,

D∩G′ ⊆ φ(G)∩G′ because ofG′ ⊆ M for each normal maximal subgroupM. HenceD = Z(G).

By Lemma 2.1, we conclude that Z(G/Z(G)) = 1, and the proof is complete.

Notice that the condition φ(G) ∩G′ = 1 for a group G is equivalent to D ∩G′ = 1, where

D is the intersection of all non-normal maximal subgroups of G.

The following examples give a group G such that φ(G) ∩G′ = 1 whereas φ(G) ̸= 1.

Example 2.3. Let p be a prime number, Sn the symmetric group of degree n and G = Sn×Zpt

such that n ≥ 3 and t > 2. It is easy to see that φ(G) = 1× Zpt−1 and G′ = An × 1.

Other example is provided by using Theorem 1.1.
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Example 2.4. Let G = ⟨a, b|a5 = 1 = b32, b−1ab = a2⟩. It is easy to see that ⟨b⟩ is a maximal

subgroup of G. Since G′ = ⟨a⟩ and φ(G) ⊆ ⟨b⟩, we have φ(G)∩G′ = 1. Now, let K = ⟨a⟩×⟨b4⟩.
Since K is a normal subgroup of G and φ(K) ∼= Z4, so φ(G) ̸= 1.

Here, some structural properties of the derived subgroup of a group G such that φ(G) ∩
G′ = 1 are given. First, recall that a finite group G is said to be elementary if and only if

each subgroup of G has trivial Frattini subgroup. Moreover, a group satisfies the normalizer

condition if each proper subgroup is smaller than its normalizer. It was shown that for finite

groups the normalizer condition is equivalent to nilpotency.

Theorem 2.5. Let G be a nilpotent group. Then

(i) every subgroup of G is subnormal,

(ii) G satisfies the normalizer condition,

(iii) every maximal subgroup of G is normal,

(iv) G′ ⊆ φ(G).

Proof. The proof is similar to the proof of [8, 5.2.4].

Lemma 2.6. Let G be a group such that G′ is nilpotent and φ(G) ∩ G′ = 1. Then G′ is

abelian. In particular, if G′ is finite, then G′ is an elementary abelian group.

Proof. Theorem 2.5 (iv) implies G′′ ⊆ φ(G′). Therefore G′′ is a subgroup of φ(G) ∩ G′, and

hence G′ is abelian. Now, let H be an arbitrary subgroup of finite group G′. Since G′ is abelian,

we have H is a normal subgroup and then φ(H) ⊆ φ(G) ∩G′. Therefore, φ(H) is trivial and

the result follows.

Now, using Lemma 2.6, one can see that a group G in which φ(G) ∩ G′ = 1 is metabelian

if G′ is a nilpotent group.

It is easy to see that, if H is a subgroup of G such that G = Hγ2(G), then G = Hγi+1(G)

for all i ≥ 1. A proof can be found in [5, Theorem 2.3]. This fact helps us to state the following

proposition.

Proposition 2.7. Let G be a finite group such that φ(G) ∩ G′ = 1 and G′ be a nilpotent

group. Then G′ is the smallest term of the lower central series of G.

Proof. By Lemma 2.6, G′ is an elementary abelian group. Using [8, 5.2.13], there exists a

subgroup H in G such that G = HG′ and H ∩ G′ = 1. On the other hand, we have G =

Hγi+1(G) for all i ≥ 1, by using McLain’s result [5, Theorem 2.3]. Now, since H ∩γi+1(G) = 1

for all i ≥ 1, we will have G′ = γi+1(G), as desirable.
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Here, we can show that a finite group G may be described by two of its abelian subgroups

whenever φ(G) ∩G′ = 1.

Theorem 2.8. Let G be a finite group such that φ(G) ∩ G′ = 1 and G′ be nilpotent. Then

G = HG′, where H ∩G′ = 1, G′ is elementary abelian and H is abelian. Moreover, H contains

the center of G.

Proof. By Lemma 2.6, G′ is an elementary abelian group. As you see in the process of the

proof of Proposition 2.7, G = HG′ in which H is a subgroup of G and H ∩ G′ = 1. On the

other hand, H ′ is a subgroup of H ∩ G′, and hence H is abelian. Now suppose that z is

an arbitrary element of Z(G). Then z = hg′ ∈ Z(G), for some g′ ∈ G′ and h ∈ H. Since

[hg′, h1] = [g′, h1] = 1 for all h1 ∈ H, we will have g′ ∈ Z(G). Therefore Z(G) ⊆ H, because of

g′ ∈ G′ ∩ Z(G) = 1.

Let G be a group such that φ(G)∩G′ = 1. Note that, by Proposition 2.2, φ(G) ⊆ Z(G), and

so φ(G) is abelian. Moreover, if Fitting subgroup F (G) of G, the unique maximal nilpotent

normal subgroup of G, is nilpotent, then it is not difficult to check that F (G) is also abelian.

Theorem 2.9. Let G be a finite A-group such that G′ is nilpotent. Then φ(G) = (φ(G) ∩
Z(G))× (φ(G) ∩G′) and F (G) = Z(G)×G′. Furthermore, φ(G) ∩G′ = 1 if and only if φ(G)

is central.

Proof. We know [9, Theorem 5.3] that a normal abelian subgroup N of an A-group G can

be written as N = N0 × N1 × . . . × Nn−1 where Ni = N ∩ Z(G(i)) and G(n) = 1. Moreover,

φ(G), G′ and F (G) are finite nilpotent A-groups. So, one can conclude that they are abelian.

Therefore, Z(G′) = G′, n = 2 and also we will have φ(G) = (φ(G)∩Z(G))× (φ(G)∩G′) and

F (G) = (F (G) ∩ Z(G))× (F (G) ∩G′) = Z(G)×G′. This completes the proof.

Theorem 2.10. Let q be a prime number and G be a finite group such that φ(G) ∩G′ = 1.

If G′ is a q-group, then G is an A-group.

Proof. Using Theorem 2.8, G = HG′, where H ∩G′ = 1, H and G′ are abelian. Let PG be a

Sylow p-subgroup of G such that p ̸= q. Since G′ ∩PG = 1, we have P ′
G = 1. So PG is abelian.

Now, let p = q and PH be a Sylow p-subgroup of H. Then H0 = PHG′ is a normal Sylow

p-subgroup of G because of PH ∩G′ = 1. Therefore H ′
0 ⊆ φ(H0) ∩H ′

0 = φ(G) ∩G′ = 1. Thus

H0 is abelian and the result follows.

It is known [8, 1.6.18] that each Sylow subgroup of a normal subgroup N of G, PN , is as

N ∩ P in which P is a Sylow subgroup of G.
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Theorem 2.11. Let G be a finite group such that φ(G) ∩G′ = 1 and G′ be nilpotent. Then

G is an A-group.

Proof. Let PG be a Sylow p-subgroup of G. If p - |G′|, then as seen in the process of the

proof of Theorem 2.10, PG is abelian. Now, let p | |G′|. By Lemma 2.6, we have G′ is a

finite elementary abelian group. Since all Sylow subgroups of G′ are characteristic in G′,

we will have every Sylow subgroup of G′ is normal in G. Moreover, G′ can be written as a

direct product of its Sylow subgroups. So, there is a normal subgroup K of G in G′ such

that G′ = K × PG′ . In what follows, we will try to show that the factor group G/K is an

A-group. Since (G/K)′ ∼= PG′ , we have Pφ(G/K) = ∩gK∈G/K(φ((PGK/K)gK)). Therefore,

Pφ(G/K) = (∩g∈Gφ((PG)
g))K/K = Pφ(G)K/K. Now, since (G/K)′ is a p-group, we get

φ(G/K) ∩ (G/K)′ ⊆ Pφ(G/K) ∩ (G/K)′ = (Pφ(G) ∩G′)K/K = 1,

because of (Pφ(G)∩G′)K/K ⊆ (φ(G)∩G′)K/K. Therefore, G/K is an A-group, using Theorem

2.10. On the other hand, K is a p′ subgroup, so PG ∩K = 1. Thus PG is abelian as required.

Proof of Theorem A.

The result holds by Theorems 2.9 and 2.11.

Lemma 2.12. Let G be a group such that φ(G) ∩ G′ = 1. Then each stem group that is

isoclinic to G is centerless.

Proof. Let S be an stem group that is isoclinic to G. Then G′∩Z(G) ∼= Z(S). Since G′∩Z(G) ⊆
φ(G) ∩G′ = 1, we have Z(S) is trivial, as required.

Lemma 2.13. Let G be a group such that φ(G) ∩G′ = 1. Then G ∼ G/Z(G).

Proof. We know [5, Lemma 3.5] that G/N ∼ G/(N ∩G′), for each normal subgroup N of G.

So the result holds, because of Z(G) ∩G′ = 1.

One can obtain the following result by combining Lemmas 2.1, 2.12 and 2.13.

Corollary 2.14. Let G be a group such that φ(G)∩G′ = 1. Then an stem group S is isoclinic

to G, if and only if S is an n-stem group that is n-isoclinic to G.

Here we can say that every n-isoclinism family of such groups contains only one isoclinism

family.
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Theorem 2.15. Let Gi be a group such that φ(Gi) ∩ G′
i = 1, for i = 1, 2. Then G1 ∼ G2 if

and only if G1 ∼n G2.

Theorem 2.16. Let G and H be two isoclinic groups such that φ(G) ∩ G′ = 1. Then Z(H)

is the hypercenter of H,φ(H/Z(H)) is trivial and so φ(H) ⊆ Z(H). Moreover, φ(H)∩H ′ = 1

and G/φ(G) ∼ H/φ(H).

Proof. It is easy to see that, if N is an intersection of some non-normal maximal subgroups of

G, then φ(G/N) is trivial. So, using Proposition 2.2, we have φ(G/Z(G)) = 1. Since G ∼ H,

we have G/Z(G) ∼= H/Z(H) and G′ ∩Z(G) ∼= H ′ ∩Z(H). Therefore, φ(H/Z(H)) = 1 and we

get φ(H) ∩H ′ = 1. The proof is completed.

According to Theorem 2.16, we may say that the intersection of Frattini and derived sub-

group is a family invariant among such groups.

Proof of Theorem B.

(i) The result follows from Proposition 2.2.

(ii) The result follows from Lemma 2.1, and Lemma 2.16.

(iii) By part (ii), we have G/Z(G) is a finite group with trivial Frattini subgroup and

(G/Z(G))′ ∼= G′. Also, Theorem 2.8 implies G/Z(G) = (H/Z(G))(G′Z(G)/Z(G)),

where (H/Z(G)) ∩ (G′Z(G)/Z(G)) = 1, G′ is elementary abelian and H/Z(G) is

abelian. But (H/Z(G)) ∩ (G′Z(G)/Z(G)) = (H ∩ G′)Z(G)/Z(G) = 1 and then

H ∩G′ ⊆ Z(G) ∩G′ = 1, and H is abelian.

(iv) Suppose that S is an stem group that is isoclinic to G. By Lemma 2.12, we have

S ∼= G/Z(G). Now, since G/Z(G) is an A-group, by part (ii), and Theorem 2.11, the

result follows.

Proof of Theorem C. Let G be a group such that φ(G) ∩ G′ = 1. Lemma 2.1 and

Proposition 2.2 imply that Z(G/Z(G)) = φ(G/Z(G)) = 1. Moreover, it is known that [1,

Theorem 0.4], for a finite non-abelian group G such that φ(G) = 1, then |G/Z(G)| < |G′||GN |.
Also, there is a simple lower bound for |G : Z(G)| in terms of |G′|, whenever G′ ∩ Z(G) = 1.

In fact, we have |G′| ≤ |G : Z(G)|. Furthermore, by Proposition 2.7, we have (G/Z(G))N ∼=
GN = G′. Now, by considering the finite group G/Z(G) in the above inequalities, one can

obtain the result.

The alternating group An(n ≥ 5) asserts that the inequality in Theorem C is sharp and

that the bound we obtained there is the best possible one.

The following example shows that the condition φ(G) ∩G′ = 1 is necessary and cannot be

omitted.
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Example 2.17. Let G be an infinitely generated group by xi, yi and z, subject to the relations

xpi = ypi = zp = 1, [xi, xj ] = [yi, yj ] = 1, and [xi, yi] = z, [xi, yj ] = 1, for all i ̸= j, and

[z, xi] = [z, yi] = 1, for all i. Then Z(G) = G′ = ⟨z⟩ is finite and φ(G) ∩G′ = G′, but G/Z(G)

is infinite.
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