

Journal of Algebraic Structures and Their Applications

ISSN: 2382-9761

www.as.yazd.ac.ir

Algebraic Structures and Their Applications Vol. 5 No. 1 (2018) pp 41-49.

A SHORT NOTE ON PRIME SUBMODULES

JAFAR A'ZAMI

Communicated by B. Davvaz

ABSTRACT. Let R be a commutative ring with identity and M be a unital R-module. A proper submodule N of M with $N:_R M=\mathfrak{p}$ is said to be prime or \mathfrak{p} -prime (\mathfrak{p} a prime ideal of R) if $rx\in N$ for $r\in R$ and $x\in M$ implies that either $x\in N$ or $r\in \mathfrak{p}$. In this paper we study a new equivalent conditions for a minimal prime submodules of an R-module to be a finite set, whenever R is a Noetherian ring. Also we introduce the concept of arithmetic rank of a submodule of a Noetherian module and we give an upper bound for it.

1. Introduction

Throughout this paper, let R be a commutative ring (with identity) and M be a unital R-module. A proper submodule N of M with $N:_R M=\mathfrak{p}$ is said to be prime or \mathfrak{p} -prime (\mathfrak{p} a prime ideal of R) if $rx\in N$ for $r\in R$ and $x\in M$ implies that either $x\in N$ or $r\in \mathfrak{p}$. An other equivalent notion of prime submodules was first introduced and systematically studied in [6]. Prime submodules have been studied by several authors; see, for example, [4], [1], [7], [9], [10], [11], [12] and [14]. In section 2, we prove some new results about the finiteness of the set of

DOI:http://dx.doi.org/10.29252/asta.5.1.41

MSC(2010): Primary: 13C05; Secondary: 13E15

Keywords: arithmetic rank of a submodule, associated primes, height of a prime submodule, minimal prime submodule, prime submodule.

Received: 09 November 2017, Accepted: 01 September 2018.

© 2018 Yazd University.

minimal prime submodules of an R-module. Also we introduce the concept of arithmetic rank of a submodule of a Noetherian module and we give an upper bound for it. Throughout, for any ideal \mathfrak{b} of R, the radical of \mathfrak{b} , denoted by $\mathrm{Rad}(\mathfrak{b})$, is defined to be the set $\{x \in R : x^n \in \mathfrak{b} \text{ for some } n \in \mathbb{N}\}$ and we denote $\{\mathfrak{p} \in \mathrm{Spec}(R) : \mathfrak{p} \supseteq \mathfrak{b}\}$ by $V(\mathfrak{b})$, where $\mathrm{Spec}(R)$ denotes the set of all prime ideals of R. The symbol \subseteq denotes containment and \subseteq denotes proper containment for sets. If N is a submodule of M, we write $N \leq M$. We denote the annihilator of a factor module M/N of M by $(N:_R M)$. The set of all maximal ideals of R is denoted by $\mathrm{Max}(R)$. For any unexplained notation and terminology we refer the reader to [5], [13] and [16].

2. Preliminaries

The results of this section which will be useful in the next section given in [2].

Proposition 2.1. Let R be ring and M be a non-zero R-module and N be a submodule of M. Let $\mathfrak{p}_1,...,\mathfrak{p}_n$ be distinct prime ideals of R. Let for each $1 \leq i \leq n$, N_i be a \mathfrak{p}_i -prime submodule of M. If $N \subseteq \bigcup_{i=1}^n N_i$, then $N \subseteq N_j$ for some $1 \leq j \leq n$.

Proof. We do induction on n. The case n=2 is easy. Now let $n\geq 3$ and the case n-1is settled. By definition for each $1 \le i \le n$ we have $\mathfrak{p}_i = (N_i :_R M)$. From the hypothesis $N \subseteq \bigcup_{i=1}^n N_i$ it follows that $N = \bigcup_{i=1}^n (N_i \cap N)$. Now let the contrary be true. Then $N \not\subseteq N_i$ and hence $(N_i \cap N) \neq N$, for any $1 \leq i \leq n$. Also, from the inductive hypothesis it follows that $N \neq \bigcup_{i \in (\{1,\dots,n\}\setminus\{k\})} (N_i \cap N)$ for each $1 \leq k \leq n$ and so $(N_k \cap N) \not\subseteq \bigcup_{i \in (\{1,\dots,n\}\setminus\{k\})} (N_i \cap N)$. Let \mathfrak{q} be a minimal element of the set $\{\mathfrak{p}_1,...,\mathfrak{p}_n\}$ with respect to " \subseteq ". Then $\mathfrak{p}_i \not\subseteq \mathfrak{q}$ for each $\mathfrak{p}_i \in (\{\mathfrak{p}_1,...,\mathfrak{p}_n\}\setminus\{q\})$. Without loss of generality we may assume that $\mathfrak{q} = \mathfrak{p}_n$. Let $J_i := (N_i :_R N)$, for all i = 1, ..., n. Then from the definition it follows that $\mathfrak{p}_i \subseteq J_i$, for all i=1,...,n. On the other hand for each $x\in N$ and $r\in R$, if $rx\in (N_i\cap N)$ and $x\not\in (N_i\cap N)$, then $rx \in N_i$ and $x \notin N_i$. Therefore it follows from the definition that $r \in \mathfrak{p}_i$. So $rM \subseteq N_i$, and consequently, $rN \subseteq (N_i \cap N)$. As $(N_i \cap N) \neq N$ it follows that there exists an element $y \in (N \setminus (N_i \cap N))$. Now for each $s \in J_i$ we have $sy \in (N_i \cap N) \subseteq N_i$ and $y \notin N_i$. So it follows from the definition that $s \in \mathfrak{p}_i$. Therefore, $(N_i :_R N) = J_i = \mathfrak{p}_i = (N_i :_R M)$. But it is easy to see that $(N_i:_RN)=((N_i\cap N):_RN)$. Thus for each $1\leq i\leq n,\ N_i\cap N$ is a \mathfrak{p}_i -prime submodule of N. Therefore without loss of generality we may assume that $N = M = \bigcup_{i=1}^n N_i$ and $N_n \not\subseteq \bigcup_{i=1}^{n-1} N_i$. Next let $T := \bigcap_{i=1}^n N_i$. Then it is not to see that for each $1 \leq i \leq n$, N_i/T is a \mathfrak{p}_i -prime submodule of M/T and $M/T = \bigcup_{i=1}^n N_i/T$. Therefore, without loss of generality we may assume $M = \bigcup_{i=1}^n N_i$ and $\bigcap_{i=1}^n N_i = 0$ and $N_n \nsubseteq \bigcup_{i=1}^{n-1} N_i$. Then there is an exact sequence $0 \to M \to \bigoplus_{i=1}^n M/N_i$, which implies that $\bigcap_{i=1}^n \mathfrak{p}_i = \operatorname{Ann}_R(\bigoplus_{i=1}^n M/N_i) \subseteq \operatorname{Ann}_R(M)$. On the other hand for each $1 \leq i \leq n$ we have $\operatorname{Ann}_R(M) \subseteq (N_i :_R M) = \mathfrak{p}_i$. So $\operatorname{Ann}_R(M) \subseteq \cap_{i=1}^n \mathfrak{p}_i$. Hence $\operatorname{Ann}_R(M) = \cap_{i=1}^n \mathfrak{p}_i$. Now if we

have $\bigcap_{i=1}^{n-1} N_i = 0$, then there is an exact sequence $0 \to M \to \bigoplus_{i=1}^{n-1} M/N_i$, which implies that $\bigcap_{i=1}^{n-1} \mathfrak{p}_i = \operatorname{Ann}_R(\bigoplus_{i=1}^{n-1} M/N_i) \subseteq \operatorname{Ann}_R(M) = \bigcap_{i=1}^n \mathfrak{p}_i \subseteq \mathfrak{p}_n$. So $\mathfrak{p}_t \subseteq \mathfrak{p}_n$, for some $1 \le t \le n-1$, which is a contradiction. So $\bigcap_{i=1}^{n-1} N_i \ne 0$. Then there is an element $0 \ne a \in \bigcap_{i=1}^{n-1} N_i$. As $\bigcap_{i=1}^n N_i = 0$, it follows that $a \notin N_n$. On the other hand since $N_n \not\subseteq \bigcup_{i=1}^{n-1} N_i$, it follows that there is an element $b \in N_n$ such that $b \notin \bigcup_{i=1}^{n-1} N_i$. Now as $a + b \in \bigcup_{i=1}^n N_i$, it follows that $a + b \in N_k$ for some $1 \le k \le n$, which is a contradiction. This completes the inductive step.

Remark: Proposition 2.1 does not hold in general. For example let $p \geq 2$ be a prime number and $2 \leq n \in \mathbb{N}$. Let $R = \mathbb{Z}_p = \{\overline{0}, \overline{1}, ..., \overline{p-1}\}$ and $M = \bigoplus_{i=1}^n \mathbb{Z}_p$. Let

$$\mathfrak{A} = \{ N : N = Rx, \text{ for some } 0 \neq x \in M. \}.$$

Then $\mathfrak A$ is a finite set that has at most 2^{p^n} element and for each $N \in \mathfrak A$, N is a $\{\overline{0}\}$ -prime submodule of M such that $M \subseteq \bigcup_{N \in \mathfrak A} N$. But $M \not\subseteq N$ for any $N \in \mathfrak A$. \square

The following proposition is a generalization of [13, Ex. 16.8].

Proposition 2.2. Let R be a ring, M a non-zero R-module, N a submodule of M and $x \in M$. Let $\mathfrak{p}_1, ..., \mathfrak{p}_n$ be distinct prime ideals of R. Let for each $1 \le i \le n$, N_i be a \mathfrak{p}_i -prime submodule of M. If $N + Rx \not\subseteq \bigcup_{i=1}^n N_i$, then there exists $a \in N$ such that $a + x \notin \bigcup_{i=1}^n N_i$.

Proof. We use induction on n. Let n=1. If $x\in N_1$ then $N\not\subseteq N_1$. So there is $a\in N\backslash N_1$ and it is easy to see that $a+x\not\in N_1$. But if $x\not\in N_1$, then by choosing $a=0\in N$ the assertion holds. Now suppose $n\geq 2$ and the case n-1 is settled. Let \mathfrak{q} be a minimal element of the set $\{\mathfrak{p}_1,...,\mathfrak{p}_n\}$ with respect to " \subseteq ". Then $\mathfrak{p}_i\not\subseteq\mathfrak{q}$ for each $\mathfrak{p}_i\in(\{\mathfrak{p}_1,...,\mathfrak{p}_n\}\backslash\{q\})$. Without loss of generality we may assume that $\mathfrak{q}=\mathfrak{p}_n$. Then it is easy to see that $\bigcap_{i=1}^{n-1}\mathfrak{p}_i\not\subseteq\mathfrak{p}_n$. By inductive hypothesis there is an element $b\in N$ such that $b+x\not\in \bigcup_{i=1}^{n-1}N_i$. So the assertion hold for a=b, whenever $b+x\not\in N_n$. So we may assume $b+x\in N_n$. Then we claim that $N\not\subseteq N_n$. Because, if $N\subseteq N_n$ then $x\in N_n$ and so $N+Rx\subseteq N_n\subseteq \bigcup_{i=1}^nN_i$, which is a contradiction. Therefore, there exists an element $c\in N\backslash N_n$. As $\bigcap_{i=1}^{n-1}\mathfrak{p}_i\not\subseteq\mathfrak{p}_n$ it follows that there exists an element $c\in N\backslash N_n$. As $c\in N_n=1$ in the definition of the $c\in N_n=1$ in the proprime submodule that $c\in N_n$. Moreover, since $c\in N_n=1$ in the follows from the definition that $c\in N_n=1$ in the induction step. $c\in N_n$. Therefore, the assertion hold for $c\in N_n$. Now it is easy to see that $c\in N_n$ the induction step. $c\in N_n$. Therefore, the assertion hold for $c\in N_n$. This completes the induction step. $c\in N_n$

Definition 2.3. Let R be a Noetherian ring and M be a finitely generated R-module. For each \mathfrak{p} -prime submodule N of M we define \mathfrak{p} -height of N as:

$$\mathfrak{p}-\mathrm{ht}(N):=\sup\{k\in\mathbb{N}_0\ :\ \exists\ N_0\subset\cdots\subset N_k=N,\ \mathrm{with}\ N_i\in\mathrm{Spec}_R^{\mathfrak{p}}(M),\ \forall\,i\},$$

where $\operatorname{Spec}_R^{\mathfrak{p}}(M)$ denotes to the set of all \mathfrak{p} -prime submodules of M as an R-module.

Definition 2.4. Let R be a Noetherian ring and M be a finitely generated R-module. For each \mathfrak{p} -prime submodule N of M we define height of N as:

$$\operatorname{ht}(N) := \sup\{k \in \mathbb{N}_0 : \exists N_0 \subset \cdots \subset N_k = N, \text{ with } N_i \in \operatorname{Spec}_R(M), \forall i\},\$$

where $\operatorname{Spec}_R(M)$ denotes to the set of all prime submodules of M as an R-module.

3. Minimal prime submodules

The following lemma is needed in the proof of the first main result of this section. Note that in the sequel for any submodule B of an R-module M, the set of all minimal prime submodules of M over B is denoted by Min(B). Moreover, we denote Min(0) by Min(M). Also, V(B) is defined as follows:

$$V(B) := \{ N \in \operatorname{Spec}_{R}(M) : N \supseteq B \}.$$

Lemma 3.1. Let R be a commutative ring and $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec}(R)$. Let M be an R-module and $N_1, N_2 \in \operatorname{Min}(M)$ be respectively \mathfrak{p} -prime and \mathfrak{q} -prime submodules. Then $N_1 \neq N_2$ if and only if $\mathfrak{p} \neq \mathfrak{q}$.

Proof. If $\mathfrak{p} \neq \mathfrak{q}$ then obviously $N_1 \neq N_2$. Conversely, Let $N_1 \neq N_2$ but $\mathfrak{p} = \mathfrak{q}$. Since $N_1 = \bigcap_{L \in \operatorname{Spec}_R^{\mathfrak{p}}(M)} L$ and $N_2 = \bigcap_{L \in \operatorname{Spec}_R^{\mathfrak{q}}(M)} L$, it follows that $N_1 = N_2$ which is a contradiction.

Definition 3.2. Let M be an R-module and B be a submodule of M. Set

$$D(B) := \{ N \in Min(B) : N \text{ is not } a \text{ finitely generated } R - \text{module} \}.$$

Definition 3.3. Let R be a Noetherian ring and M be a finitely generated R-module. Then we define $dimSpec_R(M)$ as:

$$\dim \operatorname{Spec}_R(M) := \sup \{ \operatorname{ht}(N) : N \in \operatorname{Spec}_R(M) \}.$$

The minimal prime submodules of an R-module M has been studied in [17], for example see [17, Theorem 2.1]. In the next theorem we present a new conditions that an R-module M has only a finite number of minimal prime submodules, whenever R is a Noetherian ring, which is a generalization of [3, Theorem 2.1].

Theorem 3.4. Let R be a Noetherian ring, M be an R-module and B be a submodule of M. Then the following statements are equivalent:

- (1) Min(B) is finite.
- (2) For every $\mathfrak{P} \in \operatorname{Min}(B)$ there exists a finitely generated submodule $K_{\mathfrak{P}}$ of \mathfrak{P} such that $|V(K_{\mathfrak{P}}) \cap \operatorname{Min}(B)| < \infty$.
- (3) For every $\mathfrak{P} \in \text{Min}(B)$ there exists a finitely generated submodule $N_{\mathfrak{P}}$ of \mathfrak{P} such that $V(N_{\mathfrak{P}}) \cap \text{Min}(B) = {\mathfrak{P}}.$
- (4) For every $\mathfrak{P} \in \text{Min}(B)$, $\mathfrak{P} \nsubseteq \bigcup_{L \in \text{Min}(B) \setminus \{\mathfrak{P}\}} L$.
- (5) For every $\mathfrak{P} \in \text{Min}(B)$ there exists an element $x_{\mathfrak{P}} \in \mathfrak{P}$ such that $V(Rx_{\mathfrak{P}}) \cap \text{Min}(B) = {\mathfrak{P}}$.
- (6) For every $\mathfrak{P} \in D(B)$, $\mathfrak{P} \nsubseteq \bigcup_{L \in Min(B) \setminus \{\mathfrak{P}\}} L$.
- (7) For every $\mathfrak{P} \in D(B)$ there exists an element $x_{\mathfrak{P}} \in \mathfrak{P}$ such that $V(Rx_{\mathfrak{P}}) \cap Min(B) = {\mathfrak{P}}.$
- (8) For every $\mathfrak{P} \in D(B)$ there exists a finitely generated submodule $K_{\mathfrak{P}}$ of \mathfrak{P} such that $|V(K_{\mathfrak{P}}) \cap \operatorname{Min}(B)| < \infty$.
- (9) For every $\mathfrak{P} \in D(B)$ there exists a finitely generated submodule $N_{\mathfrak{P}}$ of \mathfrak{P} such that $V(N_{\mathfrak{P}}) \cap \operatorname{Min}(B) = {\mathfrak{P}}.$

Proof. Without loss of generality, we may assume that B = 0, $\operatorname{Spec}_R(M) \neq \emptyset$ and consequently $\operatorname{Min}(M) \neq \emptyset$. (1) \Rightarrow (2) Since $\operatorname{Min}(M)$ is finite, by Lemma 3.1 and Proposition 2.1, for every $\mathfrak{P} \in \operatorname{Min}(M)$, $\mathfrak{P} \nsubseteq \bigcup_{L \in \operatorname{Min}(M) \setminus \{\mathfrak{P}\}} L$ and so there exists $x \in \mathfrak{P} \setminus \bigcup_{L \in \operatorname{Min}(M) \setminus \{\mathfrak{P}\}} L$. Set $K_{\mathfrak{P}} = Rx$. Then $K_{\mathfrak{P}}$ is finitely generated and the set $V(K_{\mathfrak{P}}) \cap \operatorname{Min}(M) = \{\mathfrak{P}\}$ is finite.

- (2) \Rightarrow (3) Let $\mathfrak{P} \in \text{Min}(M)$ and $V(K_{\mathfrak{P}}) \cap \text{Min}(M) = \{\mathfrak{P}, \mathfrak{P}_2, ..., \mathfrak{P}_n\}$. Using Lemma 2.1 and Proposition 2.1 we can find an element $x \in \mathfrak{P} \setminus \bigcup_{i=2}^n \mathfrak{P}_i$. Let $N_{\mathfrak{P}} := K_{\mathfrak{P}} + Rx$. Then $N_{\mathfrak{P}}$ is finitely generated and $V(N_{\mathfrak{P}}) \cap \text{Min}(M) = \{\mathfrak{P}\}$.
- $(3) \Rightarrow (1)$ Suppose the contrary be true. Then the set Min(M) is infinite. Let

$$A := \{ \mathfrak{p} \in \operatorname{Spec}(R) : \operatorname{Spec}_R^{\mathfrak{p}}(M) \cap \operatorname{Min}(M) \neq \emptyset \}$$

 $E := \{ N \leq M : N \text{ is finitely generated and } V(N) \cap \text{Min}(M) \text{ is a finite set.} \}$

$$F := \{ L \le M : \forall N \in E, \ N \not\subseteq L \}$$

We show that there exists a maximal element K of F such that $(K :_R M)$ is a prime ideal. Since Min(M) is infinite, so the zero submodule of M belong to the F and therefore by Zorn's Lemma F has a maximal element. Let L be a maximal element of F. If $(L :_R M)$ be a prime ideal, we are through. If not, then it is clear that $(L :_R M) \neq R$. Let $\mathfrak{q}_1 \in Ass_R(R/(L :_R M))$. By the definition there exists $r \in R \setminus (L :_R M)$ such that $\mathfrak{q}_1 = ((L :_R M) : r)$ and therefore $\mathfrak{q}_1 rM \subseteq L$. Since $r \notin (L :_R M)$, it follows that there exists an element $x \in M$ such that $rx \notin L$. Now there exists $N \in E$ such that $N \subseteq L + Rrx$. In particular,

$$\mathfrak{q}_1 N \subseteq L + \mathfrak{q}_1 rx \subseteq L + \mathfrak{q}_1 rM \subseteq L.$$

Since \mathfrak{q}_1N is finitely generated, so $|V(\mathfrak{q}_1N)\cap \operatorname{Min}(M)|=\infty$. But in this case for all $\mathfrak{P}\in (V(\mathfrak{q}_1N)\cap \operatorname{Min}(M))\setminus (V(N)\cap \operatorname{Min}(M))$, we have $\mathfrak{q}_1N\subseteq \mathfrak{P}$ and $N\nsubseteq \mathfrak{P}$. Now if \mathfrak{P} be a \mathfrak{p} -Prime submodule, then $\mathfrak{q}_1\subseteq \mathfrak{p}$ and so $|V(\mathfrak{q}_1)\cap A|=\infty$. Hence $|V(\mathfrak{q}_1M)\cap \operatorname{Min}(M)|=\infty$. So for all $N\in E$, we have $N\nsubseteq \mathfrak{q}_1M$ and therefore $\mathfrak{q}_1M\in F$. Let

$$U:=\{\mathfrak{q}\in V(\mathfrak{q}_1)\ :\ \mathfrak{q}M\in F\}.$$

Since R is Noetherian it follows that U has a maximal element, say \mathfrak{q}_2 . But $\mathfrak{q}_2M \subseteq H$, for some maximal element H of F. We claim that $(H:_RM)$ is a prime ideal of R. If not, according to the above argument, there exists $\mathfrak{q}_3 \in \operatorname{Ass}_R(R/(H:_RM))$ such that $\mathfrak{q}_3M \in F$ and $\mathfrak{q}_2 \subseteq (H:_RM) \subseteq \mathfrak{q}_3$. By choosing \mathfrak{q}_2 , we must have $\mathfrak{q}_2 = \mathfrak{q}_3$, which is a contradiction. Therefore $(H:_RM) = \mathfrak{q}_2$ is a prime ideal. Now we show that H is a \mathfrak{q}_2 -prime submodule. Otherwise there exist $x \in M \setminus H$ and $x \in R \setminus \mathfrak{q}_2$, such that $x \in H$. So $x \in Z_R(M/H) = \bigcup_{\mathfrak{q} \in \operatorname{Ass}_R(M/H)} \mathfrak{q}$ and hence there exists $\mathfrak{q}' \in \operatorname{Ass}_R(M/H)$ such that $x \in \mathfrak{q}'$. Consequently, $\mathfrak{q}_2 \subset \mathfrak{q}'$. On the other hand by the definition $\mathfrak{q}' = (H:_Ry)$ for some $y \in M \setminus H$. Since $H \subset H + Ry$, it follows that there exists $x \in H \cap H$ and $x \in H \cap H$ and so $x \in H \cap H$. According to the above argument, $|V(\mathfrak{q}'M) \cap \operatorname{Min}(M)| = \infty$ which implies $x \in H \cap H$. Finally, we have $x \in H \cap H$ above argument, $|V(\mathfrak{q}'M) \cap \operatorname{Min}(M)| = \infty$ which implies $x \in H \cap H$ is a $x \in H \cap H$. By assumption there exists a submodule $x \in H \cap H$ such as $x \in H \cap H$ such as $x \in H \cap H$. By assumption there exists a submodule $x \in H \cap H$ such that $x \in H \cap H$ such as $x \in H \cap H$ such that $x \in H \cap H$ such as $x \in H \cap H$ such that $x \in H \cap H$ such that $x \in H \cap H$ such that $x \in H \cap H$ such as $x \in H \cap H$ such that $x \in H \cap H$

Now the proof of $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ is complete.

- $(1) \Rightarrow (4)$ Follows from Lemma 3.1 and Proposition 2.1.
- $(4) \Rightarrow (1) \Leftrightarrow (5)$ Since $(5) \Leftrightarrow (4) \Rightarrow (3)$ is clear so we have $(1) \Leftrightarrow (4) \Leftrightarrow (5)$.

Now we have the following: $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$.

- $(4) \Rightarrow (6)$ Is clear.
- $(6) \Rightarrow (3)$ Since for every $\mathfrak{P} \in D(0)$, $\mathfrak{P} \nsubseteq \bigcup_{L \in Min(M) \setminus \{\mathfrak{P}\}} L$, it follows that there exists $x_{\mathfrak{P}} \in \mathfrak{P}$ such that $V(Rx_{\mathfrak{P}}) \cap Min(M) = \{\mathfrak{P}\}$. On the other hand for all $\mathfrak{P} \in (Min(M) \setminus D(0))$, we have $V(\mathfrak{P}) \cap Min(M) = \{\mathfrak{P}\}$, where \mathfrak{P} is finitely generated. So the assertion follows.
- $(6) \Leftrightarrow (7) \text{ and } (1) \Rightarrow (8), (9) \text{ are clear.}$
- $(8), (9) \Rightarrow (3)$ Follow by a similar arguments as in $(6) \Rightarrow (3)$.

The following results follow from Theorem 3.4.

Corollary 3.5. Let R be a Noetherian ring, M an R-module and B be a proper submodule of M. Then Min(B) is infinite if and only if there exists $\mathfrak{P} \in D(B)$ such that $\mathfrak{P} \subseteq \bigcup_{L \in (Min(B) \setminus \{\mathfrak{P}\})} L$.

Proof. Follows immediately from Theorem 3.4.

Corollary 3.6. Let R be a Noetherian ring, M an R-module and B be a proper submodule of M such that any minimal prime submodule over B is finitely generated. Then Min(B) is finite.

Proof. Follows immediately from Theorem 3.4.

Definition 3.7. Let R be a Noetherian ring, $M \neq 0$ be a finitely generated R-module and N be a proper submodule of M. Then the radical of N is defined as:

$$\operatorname{Rad}(N) = \bigcap_{L \in \operatorname{Min} N} L.$$

Before bringing the next definition, recall that for any ideal I of a Noetherian ring, the arithmetic rank of I, denoted by ara(I), is the least number of elements of I required to generate an ideal which has the same radical as I, i.e.,

$$\operatorname{ara}(I) := \min\{n \in \mathbb{N}_0 : \exists x_1, \dots, x_n \in I \text{ with } \operatorname{Rad}((x_1, \dots, x_n)) = \operatorname{Rad}(I)\}.$$

Definition 3.8. Let R be a Noetherian ring, $M \neq 0$ be a finitely generated R-module and N be a proper submodule of M. We define the *arithmetic rank* of N, as:

$$\operatorname{ara}(N) := \min\{n \in \mathbb{N}_0 : \exists x_1, \dots, x_n \in N \text{ with } \operatorname{Rad}((x_1, \dots, x_n)) = \operatorname{Rad}(N)\}.$$

The next theorem is a generalization of [15, Theorem 2.7].

Theorem 3.9. Let R be a Noetherian ring, $M \neq 0$ a finitely generated R-module and N be a proper submodule of M. Then $\operatorname{ara}(N) \leq \dim \operatorname{Spec}_R(M) + 1$

Proof. Let $d := \dim \operatorname{Spec}_R(M)$. We may assume that d is finite. Now, suppose, to the contrary, that $\operatorname{ara}(N) > d + 1$. Let $n := \operatorname{ara}(N)$. Since $n > d + 1 \ge 1$ it follows from the definition that there exist elements x_1, \ldots, x_n in N such that $\operatorname{Rad}(N) = \operatorname{Rad}((x_1, \ldots, x_n))$. As n > 0 it follows that $\operatorname{Min}(0) \setminus V(N) \neq \emptyset$. Therefore it follows from Lemma 3.1 and proposition 2.1 that

 $N \nsubseteq \bigcup_{L \in \text{Min}(0) \setminus V(N)} L$. Therefore $(x_1, \dots, x_n) \nsubseteq \bigcup_{L \in \text{Min}(0) \setminus V(N)} L$, and so by Proposition 2.2 there is $a_1 \in (x_2, \dots, x_n)$ such that

$$x_1 + a_1 \not\in \bigcup_{L \in Min(0) \setminus V(N)} L.$$

Let $y_1 := x_1 + a_1$. Then $y_1 \in N$ and $\operatorname{Rad}(N) = \operatorname{Rad}((y_1, x_2, \dots, x_n))$. We shall construct the sequence $y_1, \dots, y_{n-1} \in N$ such that $\operatorname{Rad}(N) = \operatorname{Rad}((y_1, \dots, y_{n-1}, x_n))$ and $y_j \notin \bigcup_{L \in \operatorname{Min}((y_1, \dots, y_{j-1}) \setminus V(N))} L$, for each $1 \leq j \leq n-1$, by an inductive process. To do this end, assume that $1 \leq k < n-1$, and that we have already constructed elements y_1, \dots, y_k such that

$$Rad(N) = Rad((y_1, ..., y_k, x_{k+1}, ..., x_n)).$$

We show how to construct y_{k+1} . To do this, as k < n-1 it follows that

$$Min((y_1,\ldots,y_k))\backslash V(N)\neq\emptyset.$$

Therefore it follows from Lemma 3.1 and proposition 2.1 that

$$N \nsubseteq \bigcup_{L \in Min((y_1, \dots, y_k)) \setminus V(N)} L.$$

Therefore $(y_1, \ldots, y_k, x_{k+1}, \ldots, x_n) \nsubseteq \bigcup_{L \in \text{Min}((y_1, \ldots, y_k)) \setminus V(N)} L$, and so by Proposition 2.2 there is $a_{k+1} \in (y_1, \ldots, y_k, x_{k+2}, \ldots, x_n)$ such that

$$x_{k+1} + a_{k+1} \notin \bigcup_{L \in \text{Min}((y_1, \dots, y_k)) \setminus V(N)} L.$$

Let $y_{k+1} := x_{k+1} + a_{k+1}$. Then $y_{k+1} \in N$ and $\operatorname{Rad}(N) = \operatorname{Rad}((y_1, \ldots, y_k, y_{k+1}, x_{k+2}, \ldots, x_n))$. This completes the inductive step in the construction. Now it is easy to see that $\operatorname{Min}((y_1, \ldots, y_{n-1})) \setminus V(N) \neq \emptyset$. Also, by using an induction argument we can deduce that for any $1 \leq j \leq n-1$ and any $L \in \operatorname{Min}((y_1, \ldots, y_j)) \setminus V(N)$ we have $\operatorname{ht}(L) \geq j$. Consequently, since there exists a prime submodule L of M in which $L \in \operatorname{Min}((y_1, \ldots, y_{n-1})) \setminus V(N)$ it follows that $n-1 \leq \operatorname{ht}(L) \leq \operatorname{dim}\operatorname{Spec}_R(M) = d$, which implies that $n \leq d+1$, as required. \square

4. Acknowledgments

The author is deeply grateful to the referee for a very careful reading of the manuscript and many valuable suggestions.

References

- [1] S. Abu-Saymeh, On dimensions of finitely generated modules, Comm. Alg. 23(1995), 1131-1144.
- [2] J. Azami and M. Khajepour, Topics in prime submodules and other aspects of the prime avoidence theorem, Preprint(Mathematical Reports).
- [3] K. Bahmanpour, A. Khojali and R. Naghipour, A note on minimal prime divisors of an ideal, Algebra Colloq. 18(2011), 727-732.
- [4] M. Behboodi, A generalization of the classical Krull dimension for modules, J. Algebra. 305(2006), 1128-1148.
- [5] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Univ. Press, Cambridge, UK, 1993.
- [6] J. Dauns, *Prime modules*, J. Reine Anegew. Math. **298**(1978), 156-181.
- [7] J. Jenkins and P. F. Smith, On the prime radical of a module over commutative ring, Comm. Alg. 20(1992), 3593-3602.
- [8] O. A. S. Karamzadeh, The Prime Avoidance Lemma revisited, Kyungpook Math. J. 52(2012), 149-153.
- [9] C. P. Lu, Unions of prime submodules, Houston J. Math. 23, no.2(1997), 203-213.
- [10] K. H. Leung and S. H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow math. J. 39(1997), 285-293.
- [11] S. H. Man and P. F. Smith, On chains of prime submodules, Israel J. Math. 127(2002), 131-155.
- [12] A. Marcelo and J. Munoz Maque, Prime submodules, the discent invariant, and modules of finite length, J. Algebra 189(1997), 273-293.
- [13] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cambridge, UK, 1986.
- [14] R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23(1993), 1041-1062.
- [15] A. A. Mehrvarz, K. Bahmanpour and R. Naghipour, Arithmetic rank, cohomological dimension and filter regular sequences, J. Alg. Appl. 8(2009), 855-862.
- [16] J. J. Rotman, An introduction to homological algebra, Pure Appl. Math., Academic Press, New York, 1979.
- [17] D. Pusat-Yilmaz and P. F. Smith, Chain conditions in modules with krull dimension, Comm. Alg. 24(13)(1996), 4123-4133.

Jafar A'zami

Department of mathematics, Faculty of sciences University of Mohaghegh Ardabili, Ardabil Ardabil, Iran.

jafar.azami@gmail.com