

Journal of Algebraic Structures and Their Applications

ISSN: 2382-9761

www.as.yazd.ac.ir

Algebraic Structures and Their Applications Vol. 4 No. 2 (2017) pp 39-43.

NOTE ON REGULAR AND COREGULAR SEQUENCES

H. SAREMI*

Communicated by S. Alikhani

ABSTRACT. Let R be a commutative Noetherian ring and let M be a finitely generated Rmodule. If I is an ideal of R generated by M-regular sequence, then we study the vanishing
of the first Tor functors. Moreover, for Artinian modules and coregular sequences we examine
the vanishing of the first Ext functors.

1. Introduction

Throughout this note, we shall assume that R is a commutative Noetherian ring with non-zero identity and I an ideal of R. Suppose M and A two non-zero finitely generated and Artinian R-modules, respectively. An ordered sequence $x_1, ..., x_t$ of elements of R is called an M-regular sequence [1, Definition 1.1.1]; if x_i is not a zero-divisor in $M/(x_1, ..., x_{i-1})M$ for i = 1, ..., t, and $M \neq (x_1, ..., x_t)M$. Also, an ordered sequence $x_1, ..., x_t$ of elements of R is said an A-coregular sequence [3, Definition 3.1]; if x_i is an $(0:_A(x_1, ..., x_{i-1}))$ -coregular element for i = 1, ..., t, and $(0:_A(x_1, ..., x_t)) \neq 0$. Note that an element x of R is A-coregular if A = xA, (see [3, Definition 2.4]).

DOI:http://dx.doi.org/10.29252/asta.4.2.39

MSC(2010): Primary: 13D15. Secondary: 13D07.

Keywords: regular sequence, coregular sequence, ring.

Received: 14 September 2017, Accepted: 18 September 2018

*Corresponding author

It is known that if I is generated by an M-regular sequence, then $\operatorname{Tor}_1^R(R/I, M) = 0$. In particular, if $x_1, ..., x_t$ is an R-regular sequence, $I = (x_1, ..., x_s)$ and $J = (x_{s+1}, ..., x_t)$ two ideals of R then $\operatorname{Tor}_1^R(R/I, R/J) = 0$ and so $I \cap J = IJ$.

Our main aim in this article is to extend Proposition 1.1.4 of [1] for powers an ideal that generated by regular sequence and use it over Tor functors. Additionally, we examine the problem on the self-duality.

2. The results

The interplay between regular sequences and homological invariants is a major theme, and numerous arguments will be based on the following proposition which is appear in [1].

Proposition 2.1. Let R be a ring, M an R-module, and x an M-regular sequence. Then an exact sequence

$$N_2 \xrightarrow{f_2} N_1 \xrightarrow{f_1} N_0 \xrightarrow{f_0} M \longrightarrow 0,$$

induces an exact sequence

$$\frac{N_2}{xN_2} \longrightarrow \frac{N_1}{xN_1} \longrightarrow \frac{N_0}{xN_0} \longrightarrow \frac{M}{xM} \longrightarrow 0.$$

The following result is a generalization of Proposition 2.1.

Theorem 2.2. Let (R, \mathfrak{m}) be a local ring, M a finitely generated R-module, and $I = (a_1, ..., a_t)$ an ideal generated by an M-regular sequence. Then an exact sequence

$$N_2 \xrightarrow{f_2} N_1 \xrightarrow{f_1} N_0 \xrightarrow{f_0} M \longrightarrow 0,$$

of R-modules induces an exact sequence

$$\frac{N_2}{I^n N_2} \xrightarrow{\overline{f_2}} \frac{\overline{f_2}}{I^n N_1} \xrightarrow{\overline{f_1}} \frac{\overline{f_1}}{I^n N_0} \xrightarrow{\overline{f_0}} \frac{\overline{f_0}}{I^n M} \xrightarrow{M} 0,$$

for all n > 1.

Proof. Since tensor product is a right exact functor, we only need to verify exactness at $\frac{N_1}{I^n N_1}$. let $\overline{f_1}(\overline{y}) = 0$. Then $f_1(y) \in I^n N_0$. Hence we can consider a homogeneous polynomial of degree n, $f_1(y) \in N_0[x_1, ..., x_t]$ such that

$$f_1(y) = \sum_{\alpha_{i_1} + \dots + \alpha_{i_t} = n} \alpha_{i_1 \dots i_t} x_1^{\alpha_{i_1}} \dots x_t^{\alpha_{i_t}} \quad (*)$$

for some $\alpha_{i_1\dots i_t}\in N_0$. Since

$$\sum_{\alpha_{i_1}+\ldots+\alpha_{i_t}=n} f_0(\alpha_{i_1\ldots i_t}) x_1^{\alpha_{i_1}} \ldots x_t^{\alpha_{i_t}} = f_0 \circ f_1(y) = 0 \in I^{n+1}M, \quad (**)$$

by [1, Theorem 1.1.7] or [2, Theorem 16.2] the coefficients $f_0(\alpha_{i_1...i_t}) \in IM$, and so $f_0(\alpha_{i_1...i_t}) = \sum_{j=1}^t m_{i_j} x_j$ for some $m_{j_i} \in M$. By replacing m_{j_i} in the equation (**) and

repeating this argument, we have $f_0(\alpha_{i_1...i_t}) \in I^nM$ for all $n \in \mathbb{N}$. By Krull intersection Theorem, $f_0(\alpha_{i_1...i_t}) = 0$ and by our hypothesis $\alpha_{i_1...i_t} \in \operatorname{im} f_1$. Hence there exists $\beta_{i_1...i_t} \in N_1$ such that $\alpha_{i_1...i_t} = f_1(\beta_{i_1...i_t})$. Therefore by replacing this value in the equation (*) and our hypothesis, there exists $z \in N_2$ such that $y - \sum_{\alpha_{i_1} + ... + \alpha_{i_t} = n} \beta_{i_1...i_t} x_1^{\alpha_{i_1}} ... x_t^{\alpha_{i_t}} = f_2(z)$. Hence $\overline{y} = \overline{f_2}(\overline{z})$, as desired. \square

Corollary 2.3. Let (R, \mathfrak{m}) be a local ring, M a finitely generated R-module and $x_1, ..., x_s, x_{s+1}, ..., x_t$ an M-regular sequence. Then the following statements hold:

- (i) If $I = (x_1, ..., x_s)$, then $\text{Tor}_1^R(R/I^n, M) = 0$ for all $n \ge 1$.
- (ii) If $J = (x_{s+1}, ..., x_t)$, then $\text{Tor}_1^R(R/J^m, M/I^nM) = 0$ for all $m, n \ge 1$.

Proof. (i) From the exact sequence $0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0$, where F is a free R-module and by using Theorem 2.1, we obtain the result.

(ii) It is known that $\operatorname{Ass}(M/I^nM) = \operatorname{Ass}(M/IM)$. It therefore follows $\operatorname{Ass}(M/I^nM + (x_{s+1}, ..., x_i)M) = \operatorname{Ass}(M/IM + (x_{s+1}, ..., x_i)M)$ for all $n \in \mathbb{N}$ and $s+1 \le i \le t$. Hence $x_{s+1}, ..., x_t$ is an M/I^nM -regular sequence for all $n \in \mathbb{N}$ and so by Theorem 2.2, the result follows. \square

Corollary 2.4. Let (R, \mathfrak{m}) be a local ring and $J \subseteq I$ be two ideals of R such that I/J is generated by R/J-regular sequence. Then $I^n \cap J = I^{n-1}J$ for all $n \in \mathbb{N}$.

Proof. From the exact sequence

$$0 \longrightarrow \mathfrak{m} I + J/\mathfrak{m} I \longrightarrow I/\mathfrak{m} I \longrightarrow I/\mathfrak{m} I + J \longrightarrow 0,$$

and by using Nakayama's Lemma, There exists $x_1, ..., x_s, y_1, ..., y_t$ of R such that $I = (x_1, ..., x_s, y_1, ..., y_t)$, $J = (x_1, ..., x_s)$ and $I/J = (\overline{y_1}, ..., \overline{y_t})$, where $y_1, ..., y_t$ is an R/J-regular sequence. By Corollary 2.3(i) $\operatorname{Tor}_1^R(R/(y_1, ..., y_t)^n, R/J) = 0$ for all $n \in \mathbb{N}$ and so $J \cap (y_1, ..., y_t)^n = J(y_1, ..., y_t)^n$. Therefore $J \cap I^n = J \cap (J^n + J^{n-1}(y_1, ..., y_t) + ... + J(y_1, ..., y_t)^{n-1} + (y_1, ..., y_t)^n) = J^n + J^{n-1}(y_1, ..., y_t) + ... + J(y_1, ..., y_t)^{n-1} + J \cap (y_1, ..., y_t)^n = JI^{n-1}$. \square

Proposition 2.5. Let M be a finitely generated R-module and $I = (a_1, ..., a_t)$ an ideal generated by an M-regular sequence and an R-regular sequence. Then $\operatorname{Tor}_i^R(\frac{R}{I^n}, M) = 0$ for all $n \geq 1$ and all $i \geq 1$.

Proof. We use induction on n. If n = 1, then $\operatorname{Tor}_{i}^{R}(\frac{R}{I}, M) = 0$ for all $i \geq 1$, by Theorem 2.2. let n > 1 and suppose that the proposition holds for all integer smaller than n. By using the exact sequence

$$0 \longrightarrow \frac{I^{n-1}}{I^n} \longrightarrow \frac{R}{I^n} \longrightarrow \frac{R}{I^{n-1}} \longrightarrow 0,$$

and the inductive hypothesis, $\operatorname{Tor}_i^R(\frac{R}{I^n},M) \cong \operatorname{Tor}_i^R(\frac{I^{n-1}}{I^n},M)$ for all $i \geq 1$. Hence, by using [1, Theorem 1.1.8] we have the isomorphism $\frac{I^{n-1}}{I^n} \cong \bigoplus_{j=1}^{\binom{n+t-2}{t-1}} \frac{R}{I}$. Therefore, we obtain $\operatorname{Tor}_i^R(\frac{R}{I^n},M) = 0$ for all $n \geq 1$ and all $i \geq 1$. This completes the inductive step. \square

Corollary 2.6. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring, M a finitely generated maximal Cohen-Macaulay R-module, and $I=(a_1,...,a_t)$ an ideal generated by an R-regular sequence. Then $\operatorname{Tor}_i^R(\frac{R}{I^n},M)=0$ for all $i\geq 1$ and all $n\geq 1$.

Proof. Since every R-regular sequence is an M-regular sequence, the result follows by Proposition 2.5. \Box

The following result is a dual of [1, Proposition 1.1.4].

Proposition 2.7. Let A be an Artinian R-module and $I = (a_1, ..., a_t)$ an ideal generated by an A-coregular sequence. Then an exact sequence

$$0 \longrightarrow A \xrightarrow{g_0} B_0 \xrightarrow{g_1} B_1 \xrightarrow{g_2} B_2$$

of R-modules induces an exact sequence

$$0 \longrightarrow (0:_A I) \xrightarrow{g_0|} (0:_{B_0} I) \xrightarrow{g_1|} (0:_{B_1} I) \xrightarrow{g_2|} (0:_{B_1} I).$$

Proof. By induction, it is enough to consider the case in which I consists of a single A-coregular element $a=a_1$. We obtain the induced sequence if we use the functor $\operatorname{Hom}_R(\frac{R}{I},-)$. Since $\operatorname{Hom}_R(\frac{R}{I},-)$ is a left exact functor, we only need to verify exactness at $(0:B_1 \ a)$. Let g| is a reduced homomorphism of g. If $g_2|(\alpha)=g_2(\alpha)=0$ for some $\alpha\in(0:B_1 \ a)$, then $\alpha\in\operatorname{Ker} g_2=\operatorname{im} g_1$ and hence there is $\beta\in B_0$ with $\alpha=g_1(\beta)$. It follows that $a\beta\in\operatorname{Ker} g_1=\operatorname{im} g_0$ and so there is $\gamma\in A$ with $a\beta=g_0(\gamma)$. Since a is an A-coregular element, we have A=aA (see [3, Definition 2.4]), and so there is $\gamma'\in A$ with $\gamma=a\gamma'$. It follows that $a(\beta-g_0(\gamma'))=0$. Hence $\beta-g_0(\gamma')\in(0:B_0 \ a)$, and $\alpha=g_1(\beta-g_0(\gamma'))=g_1(\beta)\in\operatorname{im} g_1|$, as desired. \square

Corollary 2.8. Let A be an Artinian R-module and $I = (a_1, ..., a_t)$ an ideal generated by an A-coregular sequence. Then $\operatorname{Ext}^1_R(\frac{R}{I}, A) = 0$.

Proof. From the exact sequence $0 \longrightarrow A \longrightarrow E \longrightarrow K \longrightarrow 0$, where E is an injective R-module and by using Proposition 2.7, we obtain the result. \square

Question 2.9. (with hypothesis as Proposition 2.7) Is the following

$$0 \longrightarrow (0:_A I^n) \xrightarrow{g_0|} (0:_{B_0} I^n) \xrightarrow{g_1|} (0:_{B_1} I^n) \xrightarrow{g_2|} (0:_{B_1} I^n),$$

exact sequence for all $n \ge 1$?

Acknowledgement . I would like to thank deeply grateful to the referee for the careful reading of the manuscript and the helpful suggestions.

References

- [1] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge, UK, (1998).
- [2] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, UK, (1986).
- [3] A. Ooishi, Matlis duality and width of a module, Hiroshima Math. J., 6 (1976), 573-587.

Hero Saremi

Department of Mathematics, Sanandaj Branch Islamic Azad University Sanandaj, Iran.

 ${\tt hero.saremi@gmail.com}$