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ON THE EIGENVALUES OF NON-COMMUTING GRAPHS

MODJTABA GHORBANI, ZAHRA GHARAVI-ALKHANSARI AND ALI ZAEEM-BASHI

Communicated by S. Alikhani

Abstract. The non-commuting graph Γ(G) of a non-abelian group G with the center Z(G)

is a graph with the vertex set V (Γ(G)) = G \ Z(G) and two distinct vertices x and y are

adjacent in Γ(G) if and only if xy ̸= yx. The aim of this paper is to compute the spectra of

some well-known NC-graphs.

1. Introduction

All graphs considered in this paper are simple namely undirected graph without parallel

edges. Also, all graphs and groups are finite. Let G be a non-abelian group with the center

Z(G). The non-commuting graph (NC−graph) Γ(G) is a graph with the vertex set G \Z(G)

and two distinct vertices x, y ∈ G \ Z(G) are adjacent whenever xy ̸= yx. The concept of

NC−graphs was first considered by Paul Erdős in 1975 to answer a question on the size of

the cliques of a graph, see [21]. For background materials about NC−graphs, we encourage

the reader to see references [1, 12, 19, 20].
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In the next section, we give necessary definitions and some preliminary results and the third

section contains the main results on the spectra of NC-graphs.

2. Definitions and Preliminaries

Our notation is standard and mainly taken from standard books such as [7, 8, 11]. For a

group G, Cent(G) = {CG(x)|x ∈ G}, where CG(x) is the centralizer of the element x in G,

namely CG(x) = {y ∈ G|xy = yx}, see [2, 4, 6].

Example 2.1. Consider the symmetric group S3 by the following presentation

S3 = ⟨a, b : a2 = 1, b3 = 1, a−1ba = b−1⟩.

This group is the smallest non-abelian group of order 6. The center of this group is trivial and

so S3 \ Z(S3) = {a, b, b2, ab, ab2}. The element b commutes with b2 and thus Γ(S3) ∼= K5 \ e,
where Kn \ e denotes the graph obtained from the complete graph Kn by deleting an edge.

An independent set of a graph Γ is a subset S ⊆ V (Γ) if no two vertices of which are

adjacent. The size of the largest independent set is called the independence number. A k-

partite graph is a graph whose vertices can be partitioned into k different independent sets.

When k = 2 or 3, the related graph is denoted by bipartite or tripartite graph, respectively.

Let A = [aij ] and B = [bij ] be matrices of sizes m by p and q by n, respectively. The tensor

product (or Kronecker product) of A and B is the mq by pn matrix A ⊗ B obtained from A

by replacing each entry aij of A with the q by n matrix

aijB (1 ≤ i ≤ m, 1 ≤ j ≤ p).

The lexicographic product or composition graph Γ1 o Γ2 of two graphs Γ1 and Γ2, is a

graph with the vertex set V (Γ1) × V (Γ2) and any two vertices (u, v) and (x, y) are adjacent

in Γ1 o Γ2 if and only if either u is adjacent with x in Γ1 or u = x and v is adjacent with y in

Γ2. If the adjacency matrices of two graphs Γ1 and Γ2 are Am×m and Bn×n respectively, then

the lexicographic product of Γ1 o Γ2 has adjacency matrix

A⊗ Jm + In ⊗B.

For given graphs Γ1 and Γ2 their Cartesian product Γ1□Γ2 is defined as the graph on the

vertex set V (Γ1)× V (Γ2), where two vertices u = (u1, u2) and v = (v1, v2) are adjacent if and

only if either ([u1 = v1 and u2v2 ∈ E(Γ2)]) or ([u2 = v2 and u1v1 ∈ E(Γ1)]). Let A and B be

square matrices of orders m and n, respectively. The adjacency matrix of Cartesian product

Γ1□Γ2 can be written as A⊗ Im + In ⊗B, see [8].

The direct product Γ1 ⊠ Γ2 of two graphs Γ1 and Γ2 is defined as the graph on the vertex

set V (Γ1) × V (Γ2) and two vertices u = (u1, u2) and v = (v1, v2) are adjacent if and only if
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u1v1 ∈ E(Γ1) and u2v2 ∈ E(Γ2). The adjacency matrix of Γ1⊠Γ2 is the tensor product A⊗B

of the adjacency matrices of Γ1 and Γ2.

Example 2.2. Consider the group U6n with the following presentation

U6n = ⟨a, b : a2n = 1, b3 = 1, a−1ba = b−1⟩.

The elements of this group are

{1, a, · · · , a2n−1, b, ba, · · · , ba2n−1, b2, b2a, · · · , b2a2n−1}.

One can see that Z(U6n) = ⟨a2⟩ and so |Z(U6n)| = n. This implies that

|V (Γ(U6n))| = |U6n| − |Z(U6n)| = 5n.

Let i, j be odd numbers, then

(aib)(ajb) = (aib)a(aj−1b) = ai(ba)aj−1b = ai+j = (ajb)(aib).

Hence, {ab, a3b, · · · , a2n−1b} is an independent set. Similarly, we can prove that if i, j are odd

numbers, then (aib2)(ajb2) = (ajb2)(aib2) and so the set {ab2, · · · , a2n−1b2} is an independent

set. Now we can show that the following sets are independent

{a, a3, · · · , a2n−1}, {ab, a3b, · · · , a2n−1b}, {ab2, a3b2, · · · , a2n−1b2},

{b, b2, a2b, a2b2 · · · , a2n−2b, a2n−2b2}.

This implies that Γ(U6n) is a 4-partite graph with the following adjacency matrix


0n Jn Jn Jn×2n

Jn 0n Jn Jn×2n

Jn Jn 0n Jn×2n

J2n×n J2n×n J2n×n 02n

 =



0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 0

1 1 1 0 0


⊗ Jn = B ⊗ Jn,

where Jn is the square matrix with all entries one.

Example 2.3. Consider now the NC-graph of group T4n with the following presentation

T4n = ⟨a, b : a2n = 1, an = b2, b−1ab = a−1⟩.

The elements of the this group are

{1, a, · · · , a2n−1, b, ba, · · · , ba2n−1}.

One can prove that Z(T4n) = ⟨b2⟩ and so |Z(T4n)| = 2. This implies that

|V (Γ(T4n))| = |T4n| − |Z(T4n)| = 4n− 2.
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It is not difficult to see that, Γ(T4n) is (n + 1)-partite graph. On the other hand, Γ has

2n− 2 vertices of degree 2n and 2n vertices of degree 4n− 4. This implies that the adjacency

matrix of Γ(T4n) is

02 · · · 02 J2 · · · J2
...

02 · · · 02 J2 · · · J2

J2 · · · J2 02 · · · J2
...

J2 · · · J2 J2 · · · 02


=

 0n−1 J(n−1)×n

Jn×(n−1) (J − I)n

⊗ J2.

We recall that a finite group is called a p-group if and only if its order is a power of p, where

p is a prime integer. In [13], it is proved that there is no regular NC−graph of valency pn,

where p is an odd prime number and n is a positive integer. In general, we have the following

result.

Theorem 2.4. [13] Let G be a finite non-abelian group such that Γ(G) is k-regular. Then k

is an even number greater than or equal with 4.

Theorem 2.5. [13] Let G be a finite non-abelian group such that Γ(G) is 2s-regular, where

s ∈ N \ {1}. Then G is a 2-group.

Proposition 2.6. [1] Let G be a finite non-abelian group such that Γ(G) is a regular graph.

Then G is nilpotent of class at most 3 and G = P × A, where A is an abelian group, P is a

p-group (p is a prime) and furthermore Γ(P ) is a regular graph.

Theorem 2.7. [14] Let G be a non-abelian group and p be a prime number. If [G : Z(G)] = p2,

then Γ(G) is a regular graph.

Theorem 2.8. [6] Let G be a finite non-abelian group. Then |Cent(G)| = 4 if and only if

G/Z(G) ∼= Z2 × Z2.

Theorem 2.9. [6] Let G be a finite non-abelian group and p be a prime number. If G/Z(G) ∼=
Zp × Zp, then |Cent(G)| = p+ 2.

Remark 2.10. Let G ∼= P × Zq where p, q are prime numbers and P be a p-group. Hence,

we have G/Z(G) ∼= P/Z(P ). Thus, P/Z(P ) ∼= Zp × Zp if and only if G/Z(G) ∼= Zp × Zp.

Proposition 2.11. [13] Let p be a prime number and P be a non-abelian p-group. Then Γ(P )

is k-regular if and only if Γ(P × Zq) is kq-regular, where q is a prime number.

In the following by Kn we mean the complement of the complete graph Kn.
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Corollary 2.12. [14] Let p be a prime number and P be a non-abelian p-group. If G = P ×A,

where A is an abelian group, then the graph Γ(G) is lexicographic product of Γ(P ) around K |A|

i.e. Γ(G) ∼= Γ(P ) o K |A|.

Theorem 2.13. [14] Let G be a finite non-abelian group and p be a prime number. Then

G/Z(G) ∼= Zp × Zp if and only if Γ(G) is a regular complete (p+ 1)-partite graph.

3. Main Results

Let Γ be a graph with adjacency matrix A, the characteristic polynomial of Γ is defined as

χΓ(λ) = det(λI − A), where I is the identity matrix. The roots of this polynomial are called

the eigenvalues of Γ and form the spectrum of this graph, see [4, 10, 11, 15, 16, 17]. It is a

well-known fact that if A is a real symmetric matrix, then all eigenvalues of A are real. The

graph Γ is said to be integral if all its eigenvalues are integers, see [3, 5, 9, 10, 18].

Proposition 3.1. [22] A graph has exactly one positive eigenvalue if and only if the non-

isolated vertices form a complete multipartite graph.

Lemma 3.2. [11] Let M be the following block matrix:

M =

 0m×m Bm×n

BT
n×m An×n

 .

Then

χM (λ) = |λI −M | = λm−n|λ2In − λA−BTB|.

Theorem 3.3. [8] Let A and B be square matrices of orders m and n, respectively. If

λ1, · · · , λm are eigenvalues of A and µ1, · · · , µn are eigenvalues of B, then for 1 ≤ i ≤ m, 1 ≤
j ≤ n, the eigenvalues of A⊗B are λiµj and the eigenvalues of A⊗ Im + In ⊗B are λi + µj .

The aim of this section is to study the spectral properties of NC−graphs. In [1] it is proved

that the diameter of an NC−graph is two. On the other hand, in [10] it is proved that if Γ is

an integral k−regular graph on n vertices with diameter d, then

n ≤ k(k − 1)d − 2

k − 2
.

By using these results, in [13] the authors has proposed a necessary condition for Γ(G) to

be an integral k-regular graph. Here, we give a sufficient condition for Γ(G) to be integral.

Theorem 3.4. Let G be a finite non-abelian group and p be a prime number. If G/Z(G) ∼=
Zp × Zp, then Γ(G) is an integral graph.
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Proof. By Theorem 2.13, Γ(G) is a regular complete (p + 1)-partite graph and so it is a

strongly regular graph with parameters (k, λ, µ). Hence, the eigenvalues of Γ(G) are as follows:{[
λ− µ−

√
(λ− µ)2 + 4(k − µ)

2

]m1

,

[
λ− µ+

√
(λ− µ)2 + 4(k − µ)

2

]m2

, [k]1
}
.

If n is the number of vertices of the graph, then the number of vertices of each part of this

graph is n/(p+ 1). Hence, we have

k =
pn

p+ 1
, λ =

(p− 1)n

p+ 1
, µ =

pn

p+ 1
.

Therefore the spectrum of Γ(G) is

Spec(Γ(G)) =

{[
−n

p+ 1

]m1

, [0]m2 ,

[
pn

p+ 1

]1}
.

On the other hand, m1+m2+1 = n and pn
p+1+m1

−n
p+1 = 0. Hencem1 = p andm2 = n−1−p.

Since p+ 1 divides n, the eigenvalues of this graph are integral.

Corollary 3.5. Let G be a finite non-abelian group and p be a prime number. If G/Z(G) ∼=
Zp ×Zp, then Γ(G) has only one positive eigenvalue. In particular, p(p− 1)|Z(G)| is the only

positive eigenvalue of the regular graph Γ(G).

Proof. According to Theorem 2.13, Γ(G) is a complete (p + 1)-partite graph. Thus, by

using Proposition 3.1, Γ(G) has only one positive eigenvalue. By Theorem 3.4 the positive

eigenvalue of Γ(G) is

p(|G| − |Z(G)|)
p+ 1

=
p(p2 − 1)|Z(G)|

p+ 1
= p(p− 1)|Z(G)|.

Theorem 3.6. Let p be a prime number and P be a p-group. If G = P × A where A is an

abelian group, then the spectrum of Γ(G) is{
[0](a−1)|V (Γ(P ))| , [aλ1]

m1 , · · · , [aλs]
ms

}
,

where {[λ1]
m1 , · · · , [λs]

ms} is the spectrum of Γ(P ) and |A| = a.

Proof. By Corollary 2.12, we have Γ(G) ∼= Γ(P ) o K |A|. Let |A| = a and B be the

adjacency matrix of Γ(P ). Since the adjacency matrix of K |A| is (0)a×a, the adjacency matrix

of Γ(G) is B ⊗ Ja. Since the characteristic polynomial of Ja is χJa(λ) = λa−1(λ− a), by using

Theorem 3.3, the spectrum of Γ(G) is

Spec(Γ(G)) =
{
[0](a−1)|V (Γ(P ))| , [aλ1]

m1 , · · · , [aλs]
ms

}
.
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Lemma 3.7. Consider the block matrix

A =

 0n−1 J(n−1)×n

Jn×(n−1) (J − I)n

 .

The characteristic polynomial of A is

χA(λ) = λn−2(λ+ 1)n−1(λ2 + (1− n)λ− n(n− 1)).(1)

Proof. By using Lemma 3.2, we have

χA(λ) = λm−n|λ2In − λA−BBT |,

where m = n− 1 and B = Jn×(n−1). Hence,

χA(λ) = λ−1|(λ2 + λ)In − (λ+ n− 1)Jn| = λ−1(λ+ n− 1)nχ λ2+λ
λ+n−1

(Jn).

Since χJn(λ) = λn−1(λ− n), the proof is complete.

Theorem 3.8. The spectrum of Γ(U6n) is

Spec(Γ(U6n)) =

{
[−n]2 ,

[
n± n

√
7
]1

, [0]5n−4

}
.

Proof. In Example 2.2, it is shown that Γ(U6n) is a 4-partite graph with the adjacency

matrix B ⊗ Jn. The eigenvalues of Jn and B are {[0]n−1, [n]1} and {[0]1, [1 +
√
7]1, [1 −

√
7]1, [−1]2}, respectively. Now Theorem 3.3 yeilds the proof.

Theorem 3.9. The spectrum of graph Γ(T4n) is as follows:

Spec(Γ(T4n)) =

{
[−2]n−1 , [0]3n−3 ,

[
(n− 1)±

√
(5n− 1)(n− 1)

]1}
.

Proof. In Example 2.3, it is shown that Γ(T4n) is a (n+1)-partite graph with the following

adjacency matrix  0n−1 J(n−1)×n

Jn×(n−1) (J − I)n

⊗ J2.

The spectrum of the left hand matrix can be computed directly from Lemma 3.7 as follows:[−1]n−1 , [0]n−2 ,

[
n− 1

2
±

√
(5n− 1)(n− 1)

2

]1
 .

Thus, by using Theorem 3.3, the proof is complete.
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Theorem 3.10. The spectrum of NC−graph D2n is as follows:

if n is odd:

Spec(Γ(D2n)) =

[−1]n−1 , [0]n−2 ,

[
n− 1

2
±

√
(5n− 1)(n− 1)

2

]1
 .

if n is even:

Spec(Γ(D2n)) =

[−2]
n
2
−1, [0]

3n
2
−3,

[
(
n

2
− 1)±

√
(
5n

2
− 1)(

n

2
− 1)

]1
 .

Proof. In finding the spectrum of Γ(D2n), it is convenient to consider two separately cases:

Case 1. n is odd, the adjacency matrix of Γ has the following form: 0n−1 J(n−1)×n

Jn×(n−1) (J − I)n

 .

By using Lemma 3.7, the proof is complete.

Case 2. n = 2m is even, in this case Γ(D2n) ∼= Γ(T4m) and according to Theorem 3.9, the

proof is complete.

Here, we determine the spectrum of NC−graph of group V8n(n is odd) with the following

presentation:

V8n = ⟨a, b : a2n = b4 = 1, b−1ab−1 = bab = a−1⟩.

Theorem 3.11. The spectrum of Γ(V8n) is given by{
[−2]2n−1 , [0]6n−3 ,

[
2n− 1±

√
20n2 − 12n+ 1

]1}
.

Proof. One can prove that Z(V8n) = ⟨b2⟩ and so |Z(V8n)| = 2. This implies that

|V (Γ(V8n))| = |V8n| − |Z(V8n)| = 8n− 2.

Similar to the proof of Theorem 3.9 and Theorem 3.10, we can show that Γ(V8n) is a

(2n+ 1)-partite graph with the following partitions:

V1 = {a, · · · , a2n−1, ab2, · · · , a2n−1b2},

V2 = {b, b3},

V3 = {ab, ab3},
...

V2n+1 = {a2n−1b, a2n−1b3}.
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In other words, the vertices of V1 have degree 4n and the other vertices have degree 8n− 4.

This implies that its adjacency matrix is A(Γ(V8n)) = C ⊗ J2, where

C =

 02n−1 J(2n−1)×2n

J2n×(2n−1) (J − I)2n

 .

By using Lemma 3.7, we have

χC(λ) = λ2n−2(λ+ 1)2n−1(λ2 + (1− 2n)λ− 4n2 + 2n).

By computing the roots of above polynomial, the spectrum of C can be computed as follows:{
[−1]2n−1 , [0]2n−2 ,

[
(2n− 1±

√
20n2 − 12n+ 1)/2

]1}
.

Now, apply Theorem 3.3 to complete the proof.

In continuing, we determine the spectrum of NC−graph of group SD8n with the following

presentation:

SD8n = ⟨a, b : a4n = b2 = 1, bab = a2n−1⟩.

Theorem 3.12. The spectrum of Γ(SD8n) is as follows:

if n is even:

Spec(Γ(SD8n)) =

{
[−2]2n−1 , [0]6n−3 ,

[
2n− 1±

√
20n2 − 12n+ 1

]1}
.

if n is odd:

Spec(Γ(SD8n)) =

{
[−4]n−1 , [0]7n−5 ,

[
2(n− 1)± 2

√
(5n− 1)(n− 1)

]1}
.

Proof. One can prove that if n is even, then Z(SD8n) = ⟨a2n⟩ and so |Z(SD8n)| = 2 and

if n is odd, then Z(SD8n) = ⟨an⟩. Thus, |Z(SD8n)| = 4. This implies that if n is even, then

|V (Γ(SD8n))| = |SD8n| − |Z(SD8n)| = 8n− 2,

and if n is odd, then

|V (Γ(SD8n))| = |SD8n| − |Z(SD8n)| = 8n− 4.

We can show that if n is even then Γ(SD8n) is a (2n+ 1)-partite graph with partitions

V1 = {a, a2, · · · , a2n−1, a2n+1, · · · , a4n−1},

V2 = {b, a2nb},

V3 = {ab, a2n+1b},
...

V2n+1 = {a2n−1b, a4n−1b}
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and if n is odd then Γ(SD8n) is a (n+ 1)-partite graph with partitions

V1 = {a, a2, · · · , a4n−1} \ {an, a2n, a3n},

V2 = {b, anb, a2nb, a3nb},

V3 = {ab, an+1b, a2n+1b, a3n+1b},
...

Vn+1 = {an−1b, a2n−1b, a3n−1b, a4n−1b}.

In other words, if n is even, then the vertices of V1 have degree 4n and the other vertices

have degree 8n− 4. This implies that its adjacency matrix is equal with A(Γ(V8n)) and thus

Γ(SD8n) and Γ(V8n), where n is even, are co-spectral. If n is odd, the vertices of V1 have

degree 4n and the other vertices have degree 8n− 8. This implies that its adjacency matrix is

A(Γ(SD8n)) = C ⊗ J4, where

C =

 0n−1 J(n−1)×n

Jn×(n−1) (J − I)n

 .

The spectrum of C can be directly computed by Lemma 3.7 as follows:[−1]n−1 , [0]n−2 ,

[
n− 1

2
±

√
(5n− 1)(n− 1)

2

]1
 .

Thus, by using Theorem 3.3, the proof is complete.

Finally, we determine the spectrum ofNC−graph of Frobenius group Fp,q in which p is prime

and q|p− 1. This group is a non-abelian group of order pq with the following presentation:

Fp,q = ⟨a, b : ap = bq = 1, b−1ab = au⟩

where u is an element of order q in Z∗
p.

Theorem 3.13. Let α = (q − 1)(p− 1). The spectrum of Γ(Fp,q) is given by[−(q − 1)]p−1 , [0]pq−p−2 ,

[
α±

√
α2 − 4pα

2

]1
 .

Proof. It is not difficult to see that Z(Fp,q) = 1 and therefore |Z(Fp,q)| = 1. The elements

of this group are

{1, a, a2, · · · , ap−1} ∪ {ambn; 0 ≤ m ≤ p− 1, 1 ≤ n ≤ q − 1}.

Now we compute the centralizer of ambn. First notice that

[G : CG(a
mbn)] = |(ambn)G| = |(bn)G| = p.
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This implies that |G|
|CG(ambn| = p and so |CG(a

mbn)| = q which yields ⟨ambn⟩ ⊆ CG(a
mbn).

On the other hand, o(ambn) = q and therefore ⟨ambn⟩ = CG(a
mbn). So the graph Γ(Fp,q) is

a multi-partite graph, where one part is of order p − 1 with the elements {1, a, a2, · · · , ap−1}
and the other parts are of order q − 1. Clearly, the number of parts of order q − 1 is

pq − (p− 1)− 1

q − 1
=

pq − p

q − 1
= p.

This implies that

A(Γ(Fp,q)) =


0p−1 J(p−1)×(q−1) J(p−1)×(q−1) · · · J(p−1)×(q−1)

J(q−1)×(p−1) 0(q−1) J(q−1) · · · J(q−1)

...

J(q−1)×(p−1) J(q−1) · · · · · · 0(q−1)

 .

This yields that

det(xI −A(Γ(Fp,q))) =

∣∣∣∣∣∣ xI(p−1) J1×p ⊗ (−J(p−1)×(q−1))

Jp×1 ⊗ (−J(q−1)×(p−1)) Ip ⊗ xIq−1 + (J − I)p ⊗ (−J(q−1))

∣∣∣∣∣∣
= xpq−p−2(x+ (q − 1))p−1(x− x1)(x− x2).

where

x1 =
α+

√
α2 − 4pα

2
and x2 =

α−
√
α2 − 4pα

2
.

This completes the proof.
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