ON THE EIGENVALUES OF NON-COMMUTING GRAPHS

MODJTABA GHOORBANI, ZAHIRA GCHARAVI-ALKHANSARI AND ALI ZAEEM-BASHI

Communicated by S. Alikhani

Abstract. The non-commuting graph \(\Gamma(G) \) of a non-abelian group \(G \) with the center \(Z(G) \) is a graph with the vertex set \(V(\Gamma(G)) = G \setminus Z(G) \) and two distinct vertices \(x \) and \(y \) are adjacent in \(\Gamma(G) \) if and only if \(xy \neq yx \). The aim of this paper is to compute the spectra of some well-known NC-graphs.

1. Introduction

All graphs considered in this paper are simple namely undirected graph without parallel edges. Also, all graphs and groups are finite. Let \(G \) be a non-abelian group with the center \(Z(G) \). The non-commuting graph (NC-graph) \(\Gamma(G) \) is a graph with the vertex set \(G \setminus Z(G) \) and two distinct vertices \(x, y \in G \setminus Z(G) \) are adjacent whenever \(xy \neq yx \). The concept of NC-graphs was first considered by Paul Erdős in 1975 to answer a question on the size of the cliques of a graph, see [21]. For background materials about NC-graphs, we encourage the reader to see references [1, 12, 13, 21].

DOI: http://dx.doi.org/10.29252/asta.4.2.27
Keywords: non-commuting graph, characteristic polynomial, center of group.
Received: 01 Aug 2017, Accepted: 16 May 2018.
*Corresponding author: mghorbani@sru.ac.ir

© 2017 Yazd University.
In the next section, we give necessary definitions and some preliminary results and the third section contains the main results on the spectra of NC-graphs.

2. Definitions and Preliminaries

Our notation is standard and mainly taken from standard books such as [I, S, III]. For a group \(G \), \(\text{Cent}(G) = \{ C_G(x)| x \in G \} \), where \(C_G(x) \) is the centralizer of the element \(x \) in \(G \), namely \(C_G(x) = \{ y \in G | xy = yx \} \), see [A, I, II].

Example 2.1. Consider the symmetric group \(S_3 \) by the following presentation

\[
S_3 = \langle a, b : a^2 = 1, b^3 = 1, a^{-1}ba = b^{-1} \rangle.
\]

This group is the smallest non-abelian group of order 6. The center of this group is trivial and so \(S_3 \setminus Z(S_3) = \{ a, b, b^2, ab, ab^2 \} \). The element \(b \) commutes with \(b^2 \) and thus \(\Gamma(S_3) \cong K_5 \setminus e \), where \(K_n \setminus e \) denotes the graph obtained from the complete graph \(K_n \) by deleting an edge.

An independent set of a graph \(\Gamma \) is a subset \(S \subseteq V(\Gamma) \) if no two vertices of which are adjacent. The size of the largest independent set is called the independence number. A \(k \)-partite graph is a graph whose vertices can be partitioned into \(k \) different independent sets. When \(k = 2 \) or \(3 \), the related graph is denoted by bipartite or tripartite graph, respectively.

Let \(A = [a_{ij}] \) and \(B = [b_{ij}] \) be matrices of sizes \(m \) by \(p \) and \(q \) by \(n \), respectively. The tensor product (or Kronecker product) of \(A \) and \(B \) is the \(mq \) by \(pn \) matrix \(A \otimes B \) obtained from \(A \) by replacing each entry \(a_{ij} \) of \(A \) with the \(q \) by \(n \) matrix

\[
a_{ij}B \ (1 \leq i \leq m, 1 \leq j \leq p).
\]

The lexicographic product or composition graph \(\Gamma_1 \circ \Gamma_2 \) of two graphs \(\Gamma_1 \) and \(\Gamma_2 \), is a graph with the vertex set \(V(\Gamma_1) \times V(\Gamma_2) \) and any two vertices \((u, v) \) and \((x, y) \) are adjacent in \(\Gamma_1 \circ \Gamma_2 \) if and only if either \(u \) is adjacent with \(x \) in \(\Gamma_1 \) or \(u = x \) and \(v \) is adjacent with \(y \) in \(\Gamma_2 \). If the adjacency matrices of two graphs \(\Gamma_1 \) and \(\Gamma_2 \) are \(A_{m \times m} \) and \(B_{n \times n} \) respectively, then the lexicographic product of \(\Gamma_1 \circ \Gamma_2 \) has adjacency matrix

\[
A \otimes J_m + I_n \otimes B.
\]

For given graphs \(\Gamma_1 \) and \(\Gamma_2 \) their Cartesian product \(\Gamma_1 \square \Gamma_2 \) is defined as the graph on the vertex set \(V(\Gamma_1) \times V(\Gamma_2) \), where two vertices \(u = (u_1, u_2) \) and \(v = (v_1, v_2) \) are adjacent if and only if either \(([u_1 = v_1 \text{ and } u_2 v_2 \in E(\Gamma_2)]) \) or \(([u_2 = v_2 \text{ and } u_1 v_1 \in E(\Gamma_1)]) \). Let \(A \) and \(B \) be square matrices of orders \(m \) and \(n \), respectively. The adjacency matrix of Cartesian product \(\Gamma_1 \square \Gamma_2 \) can be written as \(A \otimes I_m + I_n \otimes B \), see [S].

The direct product \(\Gamma_1 \boxtimes \Gamma_2 \) of two graphs \(\Gamma_1 \) and \(\Gamma_2 \) is defined as the graph on the vertex set \(V(\Gamma_1) \times V(\Gamma_2) \) and two vertices \(u = (u_1, u_2) \) and \(v = (v_1, v_2) \) are adjacent if and only if
$u_1v_1 \in E(\Gamma_1)$ and $u_2v_2 \in E(\Gamma_2)$. The adjacency matrix of $\Gamma_1 \otimes \Gamma_2$ is the tensor product $A \otimes B$ of the adjacency matrices of Γ_1 and Γ_2.

Example 2.2. Consider the group U_{6n} with the following presentation

$$U_{6n} = \langle a, b : a^{2n} = 1, b^3 = 1, a^{-1}ba = b^{-1} \rangle.$$

The elements of this group are

$$\{1, a, \cdots, a^{2n-1} , b, ba, \cdots, ba^{2n-1}, b^2, b^2a, \cdots, b^2a^{2n-1}\}.$$

One can see that $Z(U_{6n}) = \langle a^2 \rangle$ and so $|Z(U_{6n})| = n$. This implies that

$$|V(\Gamma(U_{6n}))| = |U_{6n}| - |Z(U_{6n})| = 5n.$$

Let i, j be odd numbers, then

$$(a^i b)(a^j b) = (a^i b)a(a^{j-1}b) = a^i(ba)a^{j-1}b = a^{i+j} = (a^i b)(a^j b).$$

Hence, $\{ab, a^3b, \cdots, a^{2n-1}b\}$ is an independent set. Similarly, we can prove that if i, j are odd numbers, then $(a^i b^2)(a^j b^2) = (a^j b^2)(a^i b^2)$ and so the set $\{ab^2, \cdots, a^{2n-1}b^2\}$ is an independent set. Now we can show that the following sets are independent

$$\{a, a^3, \cdots, a^{2n-1}\}, \{ab, a^3b, \cdots, a^{2n-1}b\}, \{ab^2, a^3b^2, \cdots, a^{2n-1}b^2\},$$

$$\{b, b^2, a^2b, a^2b^2 \cdots, a^{2n-2}b, a^{2n-2}b^2\}.$$

This implies that $\Gamma(U_{6n})$ is a 4-partite graph with the following adjacency matrix

$$\begin{pmatrix}
0_n & J_n & J_n & J_{n \times 2n} \\
J_n & 0_n & J_n & J_{n \times 2n} \\
J_n & J_n & 0_n & J_{n \times 2n} \\
J_{2n \times n} & J_{2n \times n} & J_{2n \times n} & 0_{2n}
\end{pmatrix} \otimes J_n = B \otimes J_n,$$

where J_n is the square matrix with all entries one.

Example 2.3. Consider now the NC-graph of group T_{4n} with the following presentation

$$T_{4n} = \langle a, b : a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle.$$

The elements of this group are

$$\{1, a, \cdots, a^{2n-1} , b, ba, \cdots, ba^{2n-1}\}.$$

One can prove that $Z(T_{4n}) = \langle b^2 \rangle$ and so $|Z(T_{4n})| = 2$. This implies that

$$|V(\Gamma(T_{4n}))| = |T_{4n}| - |Z(T_{4n})| = 4n - 2.$$
It is not difficult to see that, $\Gamma(T_{4n})$ is $(n+1)$-partite graph. On the other hand, Γ has $2n - 2$ vertices of degree $2n$ and $2n$ vertices of degree $4n - 4$. This implies that the adjacency matrix of $\Gamma(T_{4n})$ is

$$
\begin{pmatrix}
0_2 & \cdots & 0_2 & J_2 & \cdots & J_2 \\
\vdots & & & \vdots & & \\
0_2 & \cdots & 0_2 & J_2 & \cdots & J_2 \\
J_2 & \cdots & J_2 & 0_2 & \cdots & J_2 \\
\vdots & & & \vdots & & \\
J_2 & \cdots & J_2 & J_2 & \cdots & 0_2
\end{pmatrix}
=
\left(\begin{array}{cc}
0_{n-1} & J_{(n-1)\times n} \\
J_{n\times(n-1)} & (J - I)_n
\end{array}\right) \otimes J_2.
$$

We recall that a finite group is called a p-group if and only if its order is a power of p, where p is a prime integer. In [13], it is proved that there is no regular NC-graph of valency p^n, where p is an odd prime number and n is a positive integer. In general, we have the following result.

Theorem 2.4. [13] Let G be a finite non-abelian group such that $\Gamma(G)$ is k-regular. Then k is an even number greater than or equal with 4.

Theorem 2.5. [13] Let G be a finite non-abelian group such that $\Gamma(G)$ is 2^s-regular, where $s \in \mathbb{N} \setminus \{1\}$. Then G is a 2-group.

Proposition 2.6. [1] Let G be a finite non-abelian group such that $\Gamma(G)$ is a regular graph. Then G is nilpotent of class at most 3 and $G = P \times A$, where A is an abelian group, P is a p-group (p is a prime) and furthermore $\Gamma(P)$ is a regular graph.

Theorem 2.7. [13] Let G be a non-abelian group and p be a prime number. If $[G : Z(G)] = p^2$, then $\Gamma(G)$ is a regular graph.

Theorem 2.8. [6] Let G be a finite non-abelian group. Then $|\text{Cent}(G)| = 4$ if and only if $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Theorem 2.9. [6] Let G be a finite non-abelian group and p be a prime number. If $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$, then $|\text{Cent}(G)| = p + 2$.

Remark 2.10. Let $G \cong P \times \mathbb{Z}_q$ where p, q are prime numbers and P be a p-group. Hence, we have $G/Z(G) \cong P/Z(P)$. Thus, $P/Z(P) \cong \mathbb{Z}_p \times \mathbb{Z}_p$ if and only if $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Proposition 2.11. [13] Let p be a prime number and P be a non-abelian p-group. Then $\Gamma(P)$ is k-regular if and only if $\Gamma(P \times \mathbb{Z}_q)$ is kq-regular, where q is a prime number.

In the following by \overline{K}_n we mean the complement of the complete graph K_n.

Corollary 2.12. Let \(p \) be a prime number and \(P \) be a non-abelian \(p \)-group. If \(G = P \times A \), where \(A \) is an abelian group, then the graph \(\Gamma(G) \) is lexicographic product of \(\Gamma(P) \) around \(\overline{K}_{|A|} \) i.e. \(\Gamma(G) \cong \Gamma(P) \circ \overline{K}_{|A|} \).

Theorem 2.13. Let \(G \) be a finite non-abelian group and \(p \) be a prime number. Then \(G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p \) if and only if \(\Gamma(G) \) is a regular complete \((p + 1)\)-partite graph.

3. Main Results

Let \(\Gamma \) be a graph with adjacency matrix \(A \), the characteristic polynomial of \(\Gamma \) is defined as \(\chi_{\Gamma}(\lambda) = \det(\lambda I - A) \), where \(I \) is the identity matrix. The roots of this polynomial are called the eigenvalues of \(\Gamma \) and form the spectrum of this graph, see [4, 10, 11, 15, 16]. It is a well-known fact that if \(A \) is a real symmetric matrix, then all eigenvalues of \(A \) are real. The graph \(\Gamma \) is said to be integral if all its eigenvalues are integers, see [3, 4, 11].

Proposition 3.1. A graph has exactly one positive eigenvalue if and only if the non-isolated vertices form a complete multipartite graph.

Lemma 3.2. Let \(M \) be the following block matrix:

\[
M = \begin{pmatrix}
0_{m \times m} & B_{m \times n} \\
B_{n \times m}^T & A_{n \times n}
\end{pmatrix}.
\]

Then

\[
\chi_M(\lambda) = |\lambda I - M| = \lambda^{m-n} |\lambda^2 I_n - \lambda A - B^T B|.
\]

Theorem 3.3. Let \(A \) and \(B \) be square matrices of orders \(m \) and \(n \), respectively. If \(\lambda_1, \ldots, \lambda_m \) are eigenvalues of \(A \) and \(\mu_1, \ldots, \mu_n \) are eigenvalues of \(B \), then for \(1 \leq i \leq m, 1 \leq j \leq n \), the eigenvalues of \(A \otimes B \) are \(\lambda_i \mu_j \) and the eigenvalues of \(A \otimes I_m + I_n \otimes B \) are \(\lambda_i + \mu_j \).

The aim of this section is to study the spectral properties of \(NC \)-graphs. In [1] it is proved that the diameter of an \(NC \)-graph is two. On the other hand, in [10] it is proved that if \(\Gamma \) is an integral \(k \)-regular graph on \(n \) vertices with diameter \(d \), then

\[
n \leq \frac{k(k-1)^d - 2}{k-2}.
\]

By using these results, in [13] the authors has proposed a necessary condition for \(\Gamma(G) \) to be an integral \(k \)-regular graph. Here, we give a sufficient condition for \(\Gamma(G) \) to be integral.

Theorem 3.4. Let \(G \) be a finite non-abelian group and \(p \) be a prime number. If \(G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p \), then \(\Gamma(G) \) is an integral graph.
Proof. By Theorem 2.13, \(\Gamma(G) \) is a regular complete \((p + 1)\)-partite graph and so it is a strongly regular graph with parameters \((k, \lambda, \mu)\). Hence, the eigenvalues of \(\Gamma(G) \) are as follows:

\[
\left\{ \frac{\lambda - \mu - \sqrt{(\lambda - \mu)^2 + 4(k - \mu)}}{2} \right\}^{m_1}, \left\{ \frac{\lambda - \mu + \sqrt{(\lambda - \mu)^2 + 4(k - \mu)}}{2} \right\}^{m_2}, [k]^1
\]

If \(n \) is the number of vertices of the graph, then the number of vertices of each part of this graph is \(n = \frac{pn}{p + 1} \). Hence, we have

\[
k = \frac{pm}{p + 1}, \quad \lambda = \frac{(p - 1)n}{p + 1}, \quad \mu = \frac{pn}{p + 1}
\]

Therefore the spectrum of \(\Gamma(G) \) is

\[
\text{Spec}(\Gamma(G)) = \left\{ \left\lfloor \frac{-n}{p + 1} \right\rfloor^{m_1}, [0]^{m_2}, \left\lfloor \frac{pm}{p + 1} \right\rfloor^1 \right\}
\]

On the other hand, \(m_1 + m_2 + 1 = n \) and \(\frac{pm}{p + 1} + m_1 - \frac{n}{p + 1} = 0 \). Hence \(m_1 = p \) and \(m_2 = n - 1 - p \). Since \(p + 1 \) divides \(n \), the eigenvalues of this graph are integral. \(\square \)

Corollary 3.5. Let \(G \) be a finite non-abelian group and \(p \) be a prime number. If \(G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p \), then \(\Gamma(G) \) has only one positive eigenvalue. In particular, \(p(p - 1)|Z(G)| \) is the only positive eigenvalue of the regular graph \(\Gamma(G) \).

Proof. According to Theorem 2.13, \(\Gamma(G) \) is a complete \((p + 1)\)-partite graph. Thus, by using Proposition 3.1, \(\Gamma(G) \) has only one positive eigenvalue. By Theorem 3.4 the positive eigenvalue of \(\Gamma(G) \) is

\[
\frac{p(\text{order of } G - \text{order of } Z(G))}{p + 1} = \frac{p(p^2 - 1)|Z(G)|}{p + 1} = p(p - 1)|Z(G)|.
\]

\(\square \)

Theorem 3.6. Let \(p \) be a prime number and \(P \) be a \(p \)-group. If \(G = P \times A \) where \(A \) is an abelian group, then the spectrum of \(\Gamma(G) \) is

\[
\text{Spec}(\Gamma(G)) = \left\{ [0]^{(a-1)|V(\Gamma(P))|}, [a\lambda_1]^{m_1}, \ldots, [a\lambda_s]^{m_s} \right\},
\]

where \(\{[\lambda_1]^{m_1}, \ldots, [\lambda_s]^{m_s}\} \) is the spectrum of \(\Gamma(P) \) and \(|A| = a \).

Proof. By Corollary 2.12, we have \(\Gamma(G) \cong \Gamma(P) \circ \mathcal{K}_{|A|} \). Let \(|A| = a \) and \(B \) be the adjacency matrix of \(\Gamma(P) \). Since the adjacency matrix of \(\mathcal{K}_{|A|} \) is \((0)_{a \times a}\), the adjacency matrix of \(\Gamma(G) \) is \(B \otimes J_a \). Since the characteristic polynomial of \(J_a \) is \(\chi_{J_a}(\lambda) = \lambda^{a-1}(\lambda - a) \), by using Theorem 3.3, the spectrum of \(\Gamma(G) \) is

\[
\text{Spec}(\Gamma(G)) = \left\{ [0]^{(a-1)|V(\Gamma(P))|}, [a\lambda_1]^{m_1}, \ldots, [a\lambda_s]^{m_s} \right\}.
\]
Lemma 3.7. Consider the block matrix

\[A = \begin{pmatrix} 0_{n-1} & J_{(n-1)\times n} \\ J_{n\times (n-1)} & (J - I)_n \end{pmatrix}. \]

The characteristic polynomial of \(A \) is

\[\chi_A(\lambda) = \lambda^{n-2}(\lambda + 1)^{n-1}(\lambda^2 + (1 - n)\lambda - n(n - 1)). \]

Proof. By using Lemma 3.2, we have

\[\chi_A(\lambda) = \lambda^{m-n}|\lambda^2 I_n - \lambda A - BB^T|, \]

where \(m = n - 1 \) and \(B = J_{n\times (n-1)} \). Hence,

\[\chi_A(\lambda) = \lambda^{-1}|(\lambda^2 + \lambda)I_n - (\lambda + n - 1)J_n| = \lambda^{-1}(\lambda + n - 1)^n \chi_{\lambda^2 + \lambda} (J_n). \]

Since \(\chi_{J_n}(\lambda) = \lambda^{n-1}(\lambda - n) \), the proof is complete.

Theorem 3.8. The spectrum of \(\Gamma(U_{6n}) \) is

\[\text{Spec}(\Gamma(U_{6n})) = \left\{ -[n]^2, \left[n \pm n\sqrt{7} \right]^1, [0]^{5n-4} \right\}. \]

Proof. In Example 2.2, it is shown that \(\Gamma(U_{6n}) \) is a 4-partite graph with the adjacency matrix \(B \otimes J_n \). The eigenvalues of \(J_n \) and \(B \) are \(\{ [0]^{n-1}, [n]^1 \} \) and \(\{ [0]^1, [1 + \sqrt{7}]^1, [1 - \sqrt{7}]^1, [-1]^2 \} \), respectively. Now Theorem 3.3 yeilds the proof.

Theorem 3.9. The spectrum of graph \(\Gamma(T_{4n}) \) is as follows:

\[\text{Spec}(\Gamma(T_{4n})) = \left\{ [-2]^{n-1}, [0]^{3n-3}, \left(n - 1 \pm \sqrt{(5n - 1)(n - 1)} \right)^1 \right\}. \]

Proof. In Example 2.3, it is shown that \(\Gamma(T_{4n}) \) is a \((n + 1)\)-partite graph with the following adjacency matrix

\[\begin{pmatrix} 0_{n-1} & J_{(n-1)\times n} \\ J_{n\times (n-1)} & (J - I)_n \end{pmatrix} \otimes J_2. \]

The spectrum of the left hand matrix can be computed directly from Lemma 3.3 as follows:

\[\left\{ [-1]^{n-1}, [0]^{n-2}, \left[\frac{n - 1}{2} \pm \frac{\sqrt{(5n - 1)(n - 1)}}{2} \right]^1 \right\}. \]

Thus, by using Theorem 3.3, the proof is complete.
Theorem 3.10. The spectrum of NC-graph D_{2n} is as follows:

if n is odd:

$$\text{Spec}(\Gamma(D_{2n})) = \left\{ [-1]^{n-1}, [0]^{n-2}, \left[\frac{n-1}{2} \pm \sqrt{\frac{(5n-1)(n-1)}{2}} \right]^1 \right\}.$$

if n is even:

$$\text{Spec}(\Gamma(D_{2n})) = \left\{ [-2]^{\frac{n}{2}-1}, [0]^{\frac{2n}{2}-3}, \left[\frac{n}{2} - 1 \pm \sqrt{\frac{(5n}{2}-1)(n/2-1)} \right]^1 \right\}.$$

Proof. In finding the spectrum of $\Gamma(D_{2n})$, it is convenient to consider two separately cases:

Case 1. n is odd, the adjacency matrix of Γ has the following form:

$$\begin{pmatrix} 0_{n-1} & J_{(n-1) \times n} \\ J_{n \times (n-1)} & (J - I)_n \end{pmatrix}.$$

By using Lemma 3.7, the proof is complete.

Case 2. $n = 2m$ is even, in this case $\Gamma(D_{2n}) \cong \Gamma(T_{4m})$ and according to Theorem 3.9, the proof is complete.

Here, we determine the spectrum of NC-graph of group $V_{8n}(n$ is odd) with the following presentation:

$$V_{8n} = \langle a, b : a^{2n} = b^4 = 1, b^{-1}ab^{-1} = bab = a^{-1} \rangle.$$

Theorem 3.11. The spectrum of $\Gamma(V_{8n})$ is given by

$$\left\{ [-2]^{2n-1}, [0]^{6n-3}, \left[2n - 1 \pm \sqrt{20n^2 - 12n + 1} \right]^1 \right\}.$$

Proof. One can prove that $Z(V_{8n}) = \langle b^2 \rangle$ and so $|Z(V_{8n})| = 2$. This implies that

$$|V(\Gamma(V_{8n}))| = |V_{8n}| - |Z(V_{8n})| = 8n - 2.$$

Similar to the proof of Theorem 3.10 and Theorem 3.11, we can show that $\Gamma(V_{8n})$ is a $(2n + 1)$-partite graph with the following partitions:

$$V_1 = \{ a, \ldots, a^{2n-1}, ab^2, \ldots, a^{2n-1}b^2 \},$$

$$V_2 = \{ b, b^3 \},$$

$$V_3 = \{ ab, ab^3 \},$$

$$\vdots$$

$$V_{2n+1} = \{ a^{2n-1}b, a^{2n-1}b^3 \}.$$
In other words, the vertices of \(V_1 \) have degree \(4n \) and the other vertices have degree \(8n - 4 \). This implies that its adjacency matrix is \(A(\Gamma(V_{8n})) = C \otimes J_2 \), where

\[
C = \begin{pmatrix}
0_{2n-1} & J_{(2n-1) \times 2n} \\
J_{2n \times (2n-1)} & (J - I)_{2n}
\end{pmatrix}.
\]

By using Lemma 3.7, we have

\[
\chi(C) = \lambda^{2n-2}(\lambda + 1)^{2n-1} (\lambda^2 + (1 - 2n)\lambda - 4n^2 + 2n).
\]

By computing the roots of above polynomial, the spectrum of \(C \) can be computed as follows:

\[
\{ [-1]^{2n-1}, [0]^{6n-3}, [2n - 1 \pm \sqrt{20n^2 - 12n + 1}] \}.
\]

Now, apply Theorem 3.3 to complete the proof.

In continuing, we determine the spectrum of \(NC \)-graph of group \(SD_{8n} \) with the following presentation:

\[SD_{8n} = \langle a, b \mid a^{4n} = b^2 = 1, bab = a^{2n-1} \rangle. \]

Theorem 3.12. The spectrum of \(\Gamma(SD_{8n}) \) is as follows:

- if \(n \) is even:
 \[\text{Spec}(\Gamma(SD_{8n})) = \{ [-2]^{2n-1}, [0]^{6n-3}, [2n - 1 \pm \sqrt{20n^2 - 12n + 1}] \} \]

- if \(n \) is odd:
 \[\text{Spec}(\Gamma(SD_{8n})) = \{ [-4]^{n-1}, [0]^{7n-5}, [2(n - 1) \pm 2\sqrt{(5n - 1)(n - 1)}] \} \]

Proof. One can prove that if \(n \) is even, then \(Z(SD_{8n}) = \langle a^{2n} \rangle \) and so \(|Z(SD_{8n})| = 2 \) and if \(n \) is odd, then \(Z(SD_{8n}) = \langle a^n \rangle \). Thus, \(|Z(SD_{8n})| = 4 \). This implies that if \(n \) is even, then

\[|V(\Gamma(SD_{8n}))| = |SD_{8n}| - |Z(SD_{8n})| = 8n - 2, \]

and if \(n \) is odd, then

\[|V(\Gamma(SD_{8n}))| = |SD_{8n}| - |Z(SD_{8n})| = 8n - 4. \]

We can show that if \(n \) is even then \(\Gamma(SD_{8n}) \) is a \((2n + 1)\)-partite graph with partitions

\[
\begin{align*}
V_1 &= \{ a, a^2, \ldots, a^{2n-1}, a^{2n+1}, \ldots, a^{4n-1} \}, \\
V_2 &= \{ b, a^{2n}b \}, \\
V_3 &= \{ ab, a^{2n+1}b \}, \\
& \vdots \\
V_{2n+1} &= \{ a^{2n-1}b, a^{4n-1}b \}
\end{align*}
\]
and if \(n \) is odd then \(\Gamma(SD_{8n}) \) is a \((n+1)\)-partite graph with partitions
\[
V_1 = \{a, a^2, \ldots, a^{4n-1}\} \setminus \{a^n, a^{2n}, a^{3n}\},
V_2 = \{b, a^{n}b, a^{2n}b, a^{3n}b\},
V_3 = \{ab, a^{n+1}b, a^{2n+1}b, a^{3n+1}b\},
\vdots
V_{n+1} = \{a^{n-1}b, a^{2n-1}b, a^{3n-1}b, a^{4n-1}b\}.
\]

In other words, if \(n \) is even, then the vertices of \(V_1 \) have degree \(4n \) and the other vertices have degree \(8n - 4 \). This implies that its adjacency matrix is equal with \(A(\Gamma(V_{8n})) \) and thus \(\Gamma(SD_{8n}) \) and \(\Gamma(V_{8n}) \), where \(n \) is even, are co-spectral. If \(n \) is odd, the vertices of \(V_1 \) have degree \(4n \) and the other vertices have degree \(8n - 8 \). This implies that its adjacency matrix is \(A(\Gamma(SD_{8n})) = C \otimes J_4 \), where
\[
C = \begin{pmatrix}
0 & J_{(n-1)\times n} \\
J_{n\times(n-1)} & (J-I)_n
\end{pmatrix}.
\]
The spectrum of \(C \) can be directly computed by Lemma 3.7 as follows:
\[
\left\{[-1]^{n-1}, [0]^{n-2}, \left[\frac{n-1}{2} \pm \sqrt{(5n-1)(n-1)}\right]\right\}.
\]
Thus, by using Theorem 3.3, the proof is complete.

Finally, we determine the spectrum of \(NC \)-graph of Frobenius group \(F_{p,q} \) in which \(p \) is prime and \(q\mid p-1 \). This group is a non-abelian group of order \(pq \) with the following presentation:
\[
F_{p,q} = \langle a, b : a^p = b^q = 1, b^{-1}ab = a^u \rangle
\]
where \(u \) is an element of order \(q \) in \(\mathbb{Z}_p^* \).

Theorem 3.13. Let \(\alpha = (q-1)(p-1) \). The spectrum of \(\Gamma(F_{p,q}) \) is given by
\[
\left\{[-(q-1)]^{p-1}, [0]^{pq-p-2}, \left[\frac{\alpha \pm \sqrt{\alpha^2 - 4pq}}{2}\right]\right\}.
\]

Proof. It is not difficult to see that \(Z(F_{p,q}) = 1 \) and therefore \(|Z(F_{p,q})| = 1 \). The elements of this group are
\[
\{1, a, a^2, \ldots, a^{p-1}\} \cup \{a^mb^n; 0 \leq m \leq p-1, 1 \leq n \leq q-1\}.
\]

Now we compute the centralizer of \(a^mb^n \). First notice that
\[
[G : C_G(a^mb^n)] = |(a^mb^n)^G| = |(b^n)^G| = p.
\]
This implies that \(|G|/|G(a^mb^n)| = p \) and so \(|C_G(a^mb^n)| = q \) which yields \(\langle a^mb^n \rangle \subseteq C_G(a^mb^n) \).

On the other hand, \(o(a^mb^n) = q \) and therefore \(\langle a^mb^n \rangle = C_G(a^mb^n) \). So the graph \(\Gamma(F_{p,q}) \) is a multi-partite graph, where one part is of order \(p-1 \) with the elements \(\{1, a, a^2, \ldots, a^{p-1}\} \) and the other parts are of order \(q-1 \). Clearly, the number of parts of order \(q-1 \) is

\[
\frac{pq - (p-1) - 1}{q-1} = \frac{pq - p}{q-1} = p.
\]

This implies that

\[
A(\Gamma(F_{p,q})) = \begin{pmatrix}
0_{p-1} & J_{(p-1) \times (q-1)} & J_{(p-1) \times (q-1)} & \cdots & J_{(p-1) \times (q-1)} \\
J_{(q-1) \times (p-1)} & 0_{(q-1)} & J_{(q-1)} & \cdots & J_{(q-1)} \\
& \vdots & & & \\
J_{(q-1) \times (p-1)} & J_{(q-1)} & \cdots & \cdots & 0_{(q-1)}
\end{pmatrix}.
\]

This yields that

\[
\det (xI - A(\Gamma(F_{p,q}))) = \begin{vmatrix}
0_{p-1} & J_{(p-1) \times (q-1)} & J_{(p-1) \times (q-1)} & \cdots & J_{(p-1) \times (q-1)} \\
J_{(q-1) \times (p-1)} & 0_{(q-1)} & J_{(q-1)} & \cdots & J_{(q-1)} \\
& \vdots & & & \\
J_{(q-1) \times (p-1)} & J_{(q-1)} & \cdots & \cdots & 0_{(q-1)}
\end{vmatrix} = x^{pq-p-2}(x + (q-1))^{p-1}(x - x_1)(x - x_2),
\]

where

\[
x_1 = \alpha + \sqrt{\alpha^2 - 4\alpha} \quad \text{and} \quad x_2 = \alpha - \sqrt{\alpha^2 - 4\alpha}.
\]

This completes the proof. \(\square \)

\[\text{References}\]

Modjtaba Ghorbani
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran
mghorbani@sru.ac.ir

Zahra Gharavi
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran
z.gh.alk5@gmail.com

Ali Zaeem-Bashi
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran
zaeembashiali@yahoo.com