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ON THE ZERO FORCING NUMBER OF SOME CAYLEY GRAPHS
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Abstract. Let Γ be a graph whose each vertex is colored either white or black. If u is a

black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color

of v to black. A zero forcing set for a graph Γ is a subset of vertices Z ⊆ V (Γ) such that

if initially the vertices in Z are colored black and the remaining vertices are colored white,

then Z changes the color of all vertices in Γ to black. The zero forcing number of Γ is the

minimum of |Z| over all zero forcing sets for Γ and is denoted by Z(Γ).

In this paper, we consider the zero forcing number of some families of Cayley graphs. In

this regard, we show that Z(Cay(D2n, S)) = 2|S| − 2, where D2n is dihedral group of order

2n and S =
{
a, a3, . . . , a2k−1, b

}
. Also, we obtain Z(Cay(G,S)), where G = ⟨a⟩ is a cyclic

group of even order n and S =
{
ai : 1 ≤ i ≤ n and i is odd

}
, S =

{
ai : 1 ≤ i ≤

n and i is odd
}
\
{
ak, a−k

}
or |S| = 3.
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1. Introduction

In this paper all graphs are assumed to be finite, simple and undirected. We will often use

the notation Γ = (V,E) to denote the graph with non-empty vertex set V = V (Γ) and edge

set E = E(Γ). An edge of Γ with endpoints u and v is denoted by uv, and we say u ∼ v if

uv ∈ E(Γ) and u ≁ v, otherwise. Vertex v is neighbor of vertex u if uv ∈ E(Γ), and the set

of all neighbors of u is denoted by N(u). The degree of a vertex u is |N(u)| and is denoted

by deg(u). The minimum degree over all the vertices of a graph Γ is the minimum degree of

graph Γ and is denoted by δ(Γ). If S ⊂ V (Γ), then induced subgraph on S in the graph Γ is

denoted by Γ[S].

Graph parameters have many application in other sciences trends. As one of the most

important, it can be zero forcing number. Also, zero forcing variants have applications in

network theory, logic and quantum, see [10],[14] and [9] for more details in these topics. If Γ

is a graph with each vertex colored either white or black, u is a black vertex of Γ, and exactly

one neighbor v of u is white, then u change the color of v to black. This algorithm is called the

color-change rule in the graph Γ. Given a coloring of Γ, the derived coloring is the (unique)

result of applying the color-change rule until no more changes are possible. A zero forcing set

for a graph Γ is a subset of vertices Z ⊆ V (Γ) such that if initially the vertices in Z are colored

black and the remaining vertices are colored white, then the derived coloring of Γ is all black.

Z(Γ) is the minimum of |Z| over all zero forcing sets for Γ.

The computation of zero forcing number is very difficult and is NP-hard, see [8]. The zero

forcing number was first introduced by F. Barioli et al. (AIM Minimum Rank Work Group)

[2] in 2008, and they used this parameter for providing an upper bound for the maximum

nullity of a graph. In [7] Davila and Kenter conjectured the lower bound

Z(Γ) ≥ (g − 2)(δ(Γ)− 2) + 2,

for every graph Γ of girth g at least 3 and minimum degree δ(Γ) at least 2. This conjecture

was considered by Gentner [10], for g = 4 and for triangle free graphs. Also, Gentner and

Rautenbach in [11] proved this conjecture for g ∈ {5, 6}. In [7], Davila and Kenter shown that

Z(Γ) ≥ 2δ(Γ)− 2 for graphs with girth of at least 5.

Let G be a group and S be a subset of G which is closed under taking inverse and does not

contain the identity element e. The Cayley graph Cay(G,S) is a graph with vertex set G and

edge set
{
uv : vu−1 ∈ S

}
. Cayley graphs are regular and vertex transitive.

In this paper, we consider the zero forcing number of some families of Cayley graphs

Cay(G,S). We show that Z(Cay(D2n, S)) = 2|S| − 2, where D2n is dihedral group of order

2n and S =
{
a, a3, . . . , a2k−1, b

}
. Also, we prove that if G = ⟨a⟩ is a cyclic group of even order

n, then Z(Cay(G,S)) = 2|S| − 2, where S =
{
ai : i is odd

}
, S =

{
ai : i is odd

}
\
{
ak, a−k

}
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or S =
{
ai, a−i, an/2

}
. In this regard, it seems that if induced subgraph on S is empty, then

Z(Cay(G,S)) ≥ 2|S| − 2.

2. preliminaries

In this section, some algebraic properties of Cayley graphs are studied which are used to

prove our main results.

Lemma 2.1. Let G be a finite group and S be a subset of G such that S = S−1 and e /∈ S. If

H is a subgroup of G, then induced subgraph on all cosets of H in Cay(G,S) are isomorphic.

Proof. Let Hg be a coset of H, where g ∈ G. For some u, v ∈ Hg, there exist h1, h2 ∈ H such

that u = h1g and v = h2g. Hence uv−1 = h1h
−1
2 . Thus two vertices u and v are adjacent if

and only if h1 and h2 are adjacent.

Abdollahi and Vatandoost [1] proved the following lemma.

Lemma 2.2. [1] Let G be a group and G = ⟨S⟩, where S = S−1 and e /∈ S. If a ∈ S and

O(a) = m > 2, then Cay(G,S) has the cycle with m vertices as a subgraph.

Lemma 2.3. Let G be a group, S be a subset of G such that S = S−1 and e /∈ S. For each

u ∈ Cay(G,S)[S], if degCay(G,S)[S](u) ≤ |S| − 3, then Z(Cay(G,S)) > |S|.

Proof. Since Cay(G,S) is |S|−regular, Z(Cay(G,S)) ≥ |S|. On the contrary, let

Z(Cay(G,S)) = |S|. Then we have a set of size |S| as the set of initial black vertices.

Since Cay(G,S) is a vertex-transitive graph, without loss of generality assume that e is the

first black vertex which is performing a force in a zero forcing process. Hence all members

of S are in Z except one of them which is forced by e. Since for each u ∈ Cay(G,S)[S],

degCay(G,S)[S](u) ≤ |S| − 3, each vertex in S is adjacent with at least other two white neigh-

bors. Thus, there is no vertex whose perform a force in a zero forcing process, which is a

contradiction. Therefore, the initial set of black vertices can not be a zero forcing set for

Cay(G,S).

Example 2.4. Let G = ⟨a⟩ whose O(a) = 6 and S = {a, a3, a5}. Then Cay(G,S) is isomor-

phic to the graph Γ which is drawn in Figure 1.

In this case, all conditions are as Lemma 2.3, and so Z(Cay(G,S)) > 3. On the other

hand, it is easy to check that Z =
{
e, a, a2, a3

}
is a zero forcing set for Cay(G,S) and so

Z(Cay(G,S)) ≤ 4. Thus, Z(Cay(G,S)) = 4.

For the main results of this paper, we need the following useful theorem.
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Figure 1. The graph Cay(⟨a⟩, S), where O(a) = 6 and S = {a, a3, a5}

Theorem 2.5. [2] Let Kn1,n2,...,nk
be a complete multipartite graph with at least one ni > 1

for 1 ≤ i ≤ k. Then Z(Kn1,n2,...,nk
) = (n1 + n2 + . . .+ nk)− 2.

3. Main Results

At first, we provide the following lemma on Cayley graphs which will be used in the sequel.

Theorem 3.1. Let G be a group of even order n and S ⊆ G such that S = S−1, e /∈ S and

|S| = n/2.

i. Cay(G,S)[S] = ∅ if and only if G \ S is a subgroup of G.

ii. If Cay(G,S)[S] = ∅, then Z(Cay(G,S)) = n− 2.

Proof. (i) If G \ S is a subgroup of G, then for u, v ∈ G \ S, we have uv−1 ∈ G \ S and so u is

not adjacent to v. Since Cay(G,S) is n/2-regular, any vertex contained in G \ S is adjacent

to all vertices contained in S and vice versa. Hence induced subgraph on S must be empty.

Conversely, let Cay(G,S)[S] = ∅. Then each vertex contained in S is adjacent to all vertices

contained in G \ S. So induced subgraph on G \ S is empty. Therefore for each u, v ∈ G \ S,
uv−1 ∈ G \ S and so G \ S is a subgroup of G.

(ii) By (i), If Cay(G,S)[S] = ∅, then G \S is a subgroup of G. Thus Cay(G,S) is isomorphic

to the complete bipartite graph with two bipartition sets of size n/2. Hence Theorem 2.5

implies that Z(Cay(G,S)) = n− 2 = 2|S| − 2.

Corollary 3.2. Let G = ⟨S⟩ be a cyclic group of even order n and S = {ai : i is an odd}.
Then Z(Cay(G,S)) = 2|S| − 2.

Theorem 3.3. Let G = ⟨a⟩ be a cyclic group of order n and S =
{
ai : i is an odd

}
\
{
ak, a−k

}
,

where o(a2k) > 2. Then Z(Cay(G,S)) = 2|S| − 2.
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Proof. Define A =
{
ai : i is an odd

}
and B =

{
ai : i is an even

}
. Since o(ak) ̸= 2, we have

ak+1 ̸= a1−k. Also, N(ak+1) = A \
{
a, a1+2k

}
and N(a1−k) = A \

{
a, a1−2k

}
. Since o(ak) ̸= 4,

we have a1+2k ̸= a1−2k. Suppose that

Z =

(
S \

{
a
})

∪
(
B \

{
a2, a1+k, a1−k

})
is a set of black vertices in Cay(G,S) and remaining vertices are white. After applying the

zero forcing process, a is forced by e, a1+k is forced by a1−2k, a1−k is forced by a1+2k. On the

other hand, o(ak) ̸= 4 implies that a2k forces a−k and a−2k forces ak. Thus, Z is a zero forcing

set for Cay(G,S) and so Z(Cay(G,S)) ≤ n− 6.

On the other hand, let Z be a zero forcing set for Cay(G,S) with minimum cardinality. Since

Cay(G,S) is a vertex transitive graph, with no loss of generality assume that e is the first

forcing vertex whose perform a force in a zero forcing process. Thus, there exist C ⊆ Z ∩ S

such that |C| = |S|−1. Without loss of generality, let a /∈ C. By applying the forcing process,

a is forced by e. In continue, let u be the second vertex whose perform a force in a zero forcing

process. The following cases will be considered.

Case 1. u = ak or u = a−k.

In this case, it is essential that B \
{
a2k, ai

}
⊆ Z or B \

{
a−2k, aj

}
⊆ Z, for i ̸= 2k and

j ̸= −2k, respectively. Hence, |Z| ≥ n− 4, which contradicts the fact that |Z| ≤ n− 6.

Case 2. u ∈ B \
{
a2k, a−2k

}
.

With no loss of generality, assume that u = a2. Thus, we will necessarily have ak ∈ Z. By

applying the forcing process, a−k is forced by a2. Here, we have no black vertex with only

one white neighbour and so it is necessary to change the color of another vertex. Let v be the

third forcing vertex whose perform a force in a zero forcing process. If v ∈ B, then v perform

no force. The following subcases will be considered.

Subcase 2.1. v = ak or v = a−k.

In this case, it is essential that B \
{
a2k, ai

}
⊆ Z or B \

{
a−2k, aj

}
⊆ Z, for i ̸= 2k, 2 and

j ̸= −2k, 2, respectively. Hence, |Z| ≥ n− 4, which contradicts the fact that |Z| ≤ n− 6.

Subcase 2.2. v ∈ A \
{
ak, a−k

}
.

Without loss of generality, assume that v = a. Thus, we will necessarily have B \{
a3, a1+k, a1−k

}
⊆ Z. Hence, |Z| ≥ n− 5, which contradicts the fact that |Z| ≤ n− 6.

Case 3. u = a2k.

After applying the forcing process, a−k is forced by a2k. Since no black vertex has only one

white neighbour, it is necessary to change the color of another vertex to black. Assume that

v is the third forcing vertex whose perform a force in a zero forcing process. The following

subcases will be considered.

Subcase 3.1. v ∈ B \
{
a−2k

}
or v = a−2k.
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First suppose that v ∈ B \
{
a−2k

}
. After applying the forcing process, ak is forced by v and

a−2k is forced by ak. Next assume that v = a−2k. Thus, after applying the forcing process, ak

is forced by a−2k. Hence, the conditions are similar for both cases. If ak or a−k is the fourth

forcing vertex, then it is necessary to have B \
{
aj
}
⊆ Z, where aj /∈

{
e, v, a2k, a−2k

}
. Hence,

|Z| ≥ n − 4, which contradicts the fact that |Z| ≤ n − 6. Also, if the fourth forcing vertex is

contained in B \
{
a2k, a−2k

}
, then it can perform no force.

In addition, assume that the fourth forcing vertex is located in A \
{
ak, a−k

}
. Without loss of

generality, let a be the fourth forcing vertex which is not located in
{
a3k, a−3k

}
. Then we will

necessarily have B \
{
a2, a1+k, a1−k

}
⊆ Z. On the other hand, either a1+k ∈ Z or a1−k ∈ Z,

then a−2k can not be forced by ak, which is a contradiction. Hence B \
{
a2
}

⊆ Z and so

|Z| ≥ n − 5, which contradicts the fact that |Z| ≤ n − 6. Now, let a3k ∈ A \
{
ak, a−k

}
be

the fourth forcing vertex whose perform a force. If o(a3k) = 2, then a2k, a−2k /∈ N(a3k) and

so essentially B \
{
aj
}
⊆ Z, where aj /∈

{
e, a2k, a−2k

}
. Hence |Z| ≥ n− 4, which contradicts

the fact that |Z| ≤ n − 6. Also, if o(a3k) ̸= 2, then a2k /∈ N(a3k) and a−2k ∈ N(a3k). Thus,

we will necessarily have B \
{
aj
}
⊆ Z, where aj /∈

{
e, a2k, a−2k

}
. Hence |Z| ≥ n − 4, which

contradicts the fact that |Z| ≤ n− 6.

Subcase 3.2. v = ak.

In this case, it is essential that B \
{
a2k, ai

}
⊆ Z, for i ̸= 2k. Hence, |Z| ≥ n − 3, which

contradicts the fact that |Z| ≤ n− 6.

Subcase 3.3. v ∈ A \
{
ak, a−k

}
.

Without loss of generality, assume that v = a. Thus, we will necessarily have B \{
a2, a1+k, a1−k

}
⊆ Z. Hence, |Z| ≥ n − 6. On the other hand, by performing a force, a2

is forced by a, a1+k is forced by a1−2k, a1−k is forced by a1+2k. Also, ak is forced by a2. Thus,

Z =

(
A \

{
a, ak, a−k

})
∪
(
B \

{
a2, a1+k, a1−k

})
is a zero forcing set for Cay(G,S) and so

|Z| ≤ n− 6. Therefore Z(Cay(G,S)) = n− 6 = 2|S| − 2.

Case 4. u ∈ A \
{
ak, a−k

}
.

Without loss of generality, assume that u = a. Thus, we will necessarily have B \{
a2, a1+k, a1−k

}
⊆ Z and so |Z| ≥ n−6. On the other hand, by performing a force, a2 is forced

by a, a1+k is forced by a1−2k, a1−k is forced by a1+2k. On the other hand, o(ak) ̸= 4 implies that

a2k forces a−k and a−2k forces ak. Thus, Z =

(
A\

{
a, ak, a−k

})
∪
(
B \

{
a2, a1+k, a1−k

})
is a

zero forcing set for Cay(G,S) and so |Z| ≤ n− 6. Therefore Z(Cay(G,S)) = n− 6 = 2|S|− 2.

Theorem 3.4. Let G = ⟨a⟩ be a cyclic group of order n = 4k. If k > 1 is odd and S =
{
ai :

i is odd and 1 ≤ i ≤ 4k − 1
}
, then Z(Cay(G,S)) = n− 4.
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Proof. Define V1 =
{
e, 2k

}
, V2 = S, V3 =

{
ai : i is even and 2 ≤ i ≤ 4k − 2

}
\
{
a2k

}
and V4 =

{
ak, a−k

}
. It is easy to check that N(e) = N(a2k) = S, N(ak) = N(a−k) = V3,

N(ai) = V3 \
{
ai+k, ai−k

}
∪ V1 and N(aj) = V2 \

{
aj+k, aj−k

}
∪ V4, where i is odd and j is

even. Thus, Cay(G,S) is isomorphic to the graph shown in Figure 2, where bold line shows

that each vertex is adjacent to all other vertices contained in the opposite set and dashed line

shows that each vertex is not adjacent to exactly two vertices contained in the opposite set.

V1 V2 V3 V4

Figure 2. The graph Cay(G,S), where G = ⟨a⟩ and S =
{
ai : i is odd and 1 ≤ i ≤ 4k − 1

}
.

Let Z = V (Cay(G,S))\
{
a, a4k−2, ak+1, a−k

}
. By applying the zero forcing process, a is forced

by e, a4k−2 is forced by a, a−k is forced by a2 and ak+1 is forced by ak. Thus, Z is a zero

forcing set for Cay(G,S) and so Z(Cay(G,S)) ≤ 4k − 4 = n− 4.

Now, let Z(Cay(G,S)) ≤ 4k − 5 and Z be a zero forcing set with minimum cardinality for

Cay(G,S). Since Cay(G,S) is vertex transitive graph, we can assume that e ∈ Z. Then it is

essential that the color of all vertices in V2 except one vertex, say a changed to black. Hence,

a is forced by e. Here, we have at least other four white vertices which are located in V1, V3

and V4. If four white vertices are contained in V3, then there is no black vertices with exactly

one white neighbour whose perform a force in a zero forcing process. Since every vertices in V3

is adjacent to V4, it is necessary that ak ∈ Z or a−k ∈ Z. Without loss of generality, assume

that ak ∈ Z. The following cases will be considered.

Case 1. There exist three white vertices in V3. Then a−k /∈ Z. Furthermore, white vertices

located in V3 are ai+k, ai−k and aj , where i is odd and j ̸= 2k is even. Hence, aj is forced by

ai. It is clear that if 1 ≤ j ≤ 4k − 1 is odd and ai+k ∈ N(aj), then ai−k ∈ N(aj). So, any

vertices in V2 and V4 can not forces the vertices ai+k and ai−k, which is wrong.

Case 2. Let a2k and a−2k be white vertices. then there exist at least other two white vertices

say x and y. Hence, there exist an odd 1 ≤ i ≤ 4k− 1 such that x = ai+k and y = ai−k. Since

a2k is the only white neighbour of ai, a2k is forced by ai. It is clear that if 1 ≤ j ≤ 4k − 1 is

odd and ai+k ∈ N(aj), then ai−k ∈ N(aj). So, there is no black vertex whose perform a force

in a zero forcing process. Therefore, Z(Cay(G,S)) ≥ n− 4 and so Z(Cay(G,S)) = n− 4.

Theorem 3.5. Let D2n = ⟨a, b : an = b2 = (ab)2 = e⟩ be the dihedral group of order 2n,

where n = 2k. Also, let S =
{
a, a3, . . . , a2k−1, b

}
. Then Z(Cay(D2n, S)) = 2|S| − 2.
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Proof. Define A1 =
{
ai : 1 ≤ i ≤ n , i is an even

}
, A2 =

{
aj : 1 ≤ j ≤ n , j is an odd

}
,

A3 =
{
bai : 1 ≤ i ≤ n , i is an even

}
and A4 =

{
baj : 1 ≤ j ≤ n , j is an odd

}
. It is easy

to see that Cay(D2n, S) is isomorphic to the graph shown in Figure 3, where bold line shows

that each vertex is adjacent to all other vertices contained in the opposite set and dashed line

shows that each vertex is adjacent to exactly one vertex contained in the opposite set. Also,

induced subgraph on Ai is empty, for 1 ≤ i ≤ 4. Since induced subgraph on S is empty,

Lemma 2.3 implies that Z(Cay(D2n, S)) > |S|.

A3 A4

A1 A2

Figure 3. The graph Cay(D2n, S), where S =
{
a, a3, . . . , a2k−1, b

}
.

Suppose that Z is the set of minimum size whose performing a force in a zero forcing process.

Since Cayley graph is vertex transitive, suppose that e ∈ Z and with no loss of generality

assume that e is the first black vertex which perform a force in a zero forcing process. Essen-

tially, A2 ⊆ Z or |A2 \ Z| = 1. Either A2 ⊆ Z or a ∈ A2 \ Z, then after applying the zero

forcing process, the vertex e change the color of b ∈ A3 or a ∈ A2 to black, respectively. Thus,

with no loss of generality assume that A2 ∪ {e} ⊆ Z.

In continue, there is no black vertex with only one white neighbour and so no vertex can apply

a forcing process. Let u be the next vertex that start the forcing process. If u ∈ A2, then

A1 \ {e} must be colored black. Also, if u ∈ A3, then all vertices in A4 except one vertex must

be colored black. Next, if u ∈ A4, then u and all vertices in A3 \{b} except one vertex must be

colored black. Finally, if u ∈ A1, then u can change the color of only one vertex contained in

A3 to black, and so we must choose all vertices in A1 until they change the color of all vertices

in A3. Until now, any choice for u forces us for adding other k − 1 black vertices to Z. Thus,

|Z| ≥ 2k. On the other hand, it is not hard to check that the set Z = A1 ∪A2 is a zero forcing

set for Cay(G,S). Hence Z(Cay(D2n, S)) ≤ 2k. Therefore Z(Cay(D2n, S)) = 2k = 2|S| − 2.

Theorem 3.6. Let G = ⟨g⟩ be a finite cyclic group of even order n and let S be a generating

subset of G such that |S| = 3 and S = {gi, g−i, gn/2}. If G is isomorphic to Z4 or Z6 and

i = 2, then Z(Cay(G,S)) = 3. Otherwise, Z(Cay(G,S)) = 2|S| − 2 = 4.
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Proof. If G ∼= Z4, then Cay(G,S) is isomorphic to K4 and so Z(Cay(G,S)) = 3. If G ∼= Z6

and i = 1, then by Lemma 2.3, Z(Cay(G,S)) ≥ 4. Also, let Z =
{
e, a, a3, a2

}
be a set of

black vertices. Then e forced a3 and a forced a4. Thus Z is a zero forcing set for Cay(G,S)

and so Z(Cay(G,S)) ≤ 4. Hence Z(Cay(G,S)) = 4. Also, if G ∼= Z6 and i = 2, then

Z(Cay(G,S)) ≥ 3. On the other hand, if Z =
{
e, a2, a4

}
is a set of black vertices, then e

forced a3, a2 forced a5 and a4 forced a. Hence Z is a zero forcing set for Cay(G,S) and so

Z(Cay(G,S)) ≤ 3. Hence Z(Cay(G,S)) = 3.

Now, let n > 6. Since S is a generating subset of G, we have gcd(i, n) = 1 or gcd(i, n/2) = 1.

Case 1. gcd(i, n) = 1.

In this case, O(gi) = n and so G is generated by gi. By Lemma 2.2, Cay(G,S) has an n-

cycle as a subgraph. Define Tℓ = {gℓi, g(ℓ+n/2)i} and Observe that for each 1 ≤ s < t ≤ n,

Ts ∩ Tt = ∅. Since g(ℓ+n/2)ig−ℓi = gn/2i = gn/2 ∈ S, induced subgraph on Tℓ is isomorphic to

P2. In this case, Cay(G,S) is isomorphic to a cubic graph with an even number of vertices,

formed from an n-cycle by adding edges connecting opposite pairs of vertices in the cycle. In

this case, by Lemma 2.3, Z(Cay(G,S)) ≥ 4. On the other hand, if Z = {e, gi, g−i, gn/2},
then it is easy to check that Z is a zero forcing set for Cay(G,S)) and so Z(Cay(G,S)) ≤ 4.

Therefore, Z(Cay(G,S)) = 4.

Case 2. gcd(i, n) ̸= 1 but gcd(i, n/2) = 1.

Since gcd(i, n/2) = 1, gcd(i, n) = 2. Hence i is an even and since gcd(i, n2 ) = 1, it follows that

n
2 is an odd which is denoted by 2k+1. Also O(gi) = n/2 = 2k+1. Let H be the subgroup of

G whose generated by gi. We have [G : H] = 2 and since gn/2 /∈ H, we have G = H ∪Hgn/2.

Observe that H has an n/2-cycle e ∼ ai ∼ a2i ∼ . . . ∼ a(n/2−1)i ∼ an/2i = e as a subgraph,

in Cay(G,S). On the other hand, by Lemma 2.1, Hgn/2 has an n/2-cycle as a subgraph, in

Cay(G,S).

In the sequel, for each1 ≤ ℓ ≤ n/2, define Tℓ = {gℓi, g(ℓ+n/2)i} such that gℓi ∈ H and g(ℓ+n/2)i ∈
Hgn/2. Obviously, for each1 ≤ s < t ≤ n/2, Ts ∩ Tt = ∅. Since g(ℓ+n/2)ig−ℓi = gn/2 ∈ S,

induced subgraph on Tℓ is isomorphic to P2. In this case, Cay(G,S) is isomorphic to Figure

4.

In this case, since n ≥ 6, Lemma 2.3 implies that Z(Cay(G,S)) ≥ 4. On the other hand, if

Z = {e, gi, g−i, gn/2}, then it is easy to check that Z is a zero forcing set for Cay(G,S)) and

so Z(Cay(G,S)) ≤ 4. Therefore, Z(Cay(G,S)) = 4.

Question. Let G be a group and S be a subset of G such that S = S−1 and e /∈ S. If

induced subgraph on S is empty, then is it true to say Z(Cay(G,S)) ≥ 2|S| − 2?



24 Alg. Struc. Appl. Vol. 4 No. 2 (2017) 15-25.

gn/2

gi+n/2

g2i+n/2

g3i+n/2

g−2i+n/2

g−i+n/2

e

gi

g2i

g3i

g−2i

g−i

Figure 4. The Cartesian product P2 × Cn.
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