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A NOTE ON A GRAPH RELATED TO THE COMAXIMAL IDEAL

GRAPH OF A COMMUTATIVE RING
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Abstract. The rings considered in this article are commutative with identity which admit

at least two maximal ideals. This article is inspired by the work done on the comaximal ideal

graph of a commutative ring. Let R be a ring. We associate an undirected graph to R denoted

by G(R), whose vertex set is the set of all proper ideals I of R such that I ̸⊆ J(R), where

J(R) is the Jacobson radical of R and distinct vertices I1, I2 are adjacent in G(R) if and only

if I1 ∩ I2 = I1I2. The aim of this article is to study the interplay between the graph-theoretic

properties of G(R) and the ring-theoretic properties of R.

1. Introduction

The rings considered in this article are commutative with identity which admit at least two

maximal ideals. Let R be a ring. We denote the set of all maximal ideals of R byMax(R). This

article is inspired by the interesting theorems proved by M. Ye and T. Wu in [15]. Motivated
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by the research work done on the comaximal graph of a ring in [9, 10, 11, 13, 14] and on the

annihilating-ideal graph of a ring in [5, 6], M. Ye and T. Wu in [15] introduced and studied a

graph structure on a ring R whose vertex set is the set of all proper ideals I of R such that

I ̸⊆ J(R), where J(R) is the Jacobson radical of R and distinct vertices I1 and I2 are adjacent

if and only if I1 + I2 = R. M. Ye and T. Wu called the graph introduced and investigated by

them in [15] as the comaximal ideal graph of R and denoted it by C (R) and they investigated

the influence of certain graph parameters of C (R) on the ring structure of R.

We denote the cardinality of a set A by |A|. Let R be a ring with |Max(R)| ≥ 2. In this

article, we introduce a graph structure on R, denoted by G(R), is an undirected graph whose

vertex set is the set of all proper ideals I of R such that I ̸⊆ J(R) and distinct vertices I1, I2

are adjacent in G(R) if and only if I1 ∩ I2 = I1I2. The graphs considered in this article are

undirected and simple. We denote the set of all vertices of a graph G by V (G) and the set of

all edges of G by E(G). A subgraph H of a graph G is said to be a spanning subgraph of G if

V (G) = V (H). Let R be a ring. If I1, I2 are ideals of R such that I1 + I2 = R, then we know

from [2, Proposition 1.10(i)] that I1 ∩ I2 = I1I2. Let I1, I2 be proper ideals of a ring such that

Ii ̸⊆ J(R) for each i ∈ {1, 2}. If I1 and I2 are adjacent in C (R), then they are adjacent in

G(R). This shows that C (R) is a spanning subgraph of G(R). Hence, it is natural to compare

the graph-theoretic properties of G(R) with that of the graph-theoretic properties of C (R).

The aim of this article is to study the interplay between the graph-theoretic properties of G(R)

and the ring-theoretic properties of R.

First, it is useful to recall certain definitions and results from commutative ring theory that

are used in this article. Let R be a ring. The nil radical of R is denoted by nil(R). A ring

R is said to be reduced if nil(R) = (0). Recall from [7, Exercise 16, page 111] that a ring R

is said to be von Neumann regular if for each a ∈ R, there exists b ∈ R such that a = a2b. A

principal ideal ring is said to be a special principal ideal ring (SPIR) if R has a unique prime

ideal. If m is the only prime ideal of a special principal ideal ring R, then we denote it by

mentioning that (R,m) is a SPIR. If (R,m) is a SPIR, then m is nilpotent. Let (R,m) be

a SPIR which is not a field. Let n ≥ 2 be least with the property that mn = (0). Then it

follows from the proof of (iii) ⇒ (i) of [2, Proposition 8.8] that {mi|i ∈ {1, . . . , n− 1}} is the

set of all nonzero proper ideals of R. A ring with a unique maximal ideal is referred to as a

quasilocal ring. A ring which admits only a finite number of maximal ideals is referred to as a

semiquasilocal ring. A Noetherian quasilocal (respectively, semiquasilocal) ring is referred to

as a local (respectively, semilocal) ring. For a ring R, we denote the set of all units of R by

U(R) and the set of all nonunits of R by NU(R). The Krull dimension of a ring R is simply

denoted by dimR. We use Spec(R) to denote the set of all prime ideals of a ring R. We use

⊂ to denote proper inclusion. For any n ≥ 2, we denote the ring of integers modulo n by Zn.
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Next, it is useful to recall the following results from graph theory before we give an account

of the results that are proved in this article. Let G = (V,E) be a graph. Let a, b ∈ V, a ̸= b.

Recall that the distance between a and b, denoted by d(a, b) is defined as the length of a

shortest path in G between a and b if there exists such a path in G; otherwise, we define

d(a, b) = ∞. We define d(a, a) = 0. The diameter of G, denoted by diam(G), is defined

as diam(G) = sup{d(a, b)|a, b ∈ V } [3]. A graph G = (V,E) is said to be connected if for

any distinct a, b ∈ V , there exists a path in G between a and b [3]. Let G = (V,E) be a

connected graph. Let a ∈ V . Then the eccentricity of a, denoted by e(a), is defined as e(a) =

sup{d(a, b)|b ∈ V }. The radius of G, denoted by r(G), is defined as r(G) = min{e(a)|a ∈ V }.
A simple graph G = (V,E) is said to be complete if every pair of distinct vertices of G are

adjacent in G [3, Definition 1.1.11]. Let n ∈ N. A complete graph on n vertices is denoted

by Kn. A graph G = (V,E) is said to be bipartite if V can be partitioned into two noempty

subsets V1 and V2 such that each edge of G has one end in V1 and the other in V2. A bipartite

graph with vertex partition V1 and V2 is said to be complete if each element of V1 is adjacent

to every element of V2.

Let G = (V,E) be a graph. Recall from [3, Definition 1.2.2] that a clique of G is a complete

subgraph of G. The clique number of G, denoted by ω(G), is defined as the largest integer

n ≥ 1 such that G contains a clique on n vertices [3, page 185]. We set ω(G) = ∞ if G

contains a clique on n vertices for all n ≥ 1. Recall from [3, page 129] that a vertex coloring

of G is a map f : V → S, where S is a set of distinct colors. A vertex coloring f : V → S is

said to be proper, if adjacent vertices of G receive different colors of S; that is, if a and b are

adjacent vertices of G, then f(a) ̸= f(b). The chromatic number of G, denoted by χ(G), is

the minimum number of colors needed for a proper vertex coloring of G [3, Definition 7.1.2].

It is well-known that for any graph G, ω(G) ≤ χ(G).

Let R be a ring with |Max(R)| ≥ 2. It is shown in Section 2 of this article that G(R) is

connected and diam(G(R)) ≤ 3. With the hypothesis that J(R) = (0), it is shown that G(R)

is complete if and only if R is von Neumann regular. Some classes of rings R are provided

such that diam(G(R)) is either 2 or 3. Moreover, some examples are given to illustrate the

results proved in this section.

Let R be a ring with |Max(R)| ≥ 2. It is proved in Section 3 of this article that G(R) is a

finite bipartite graph if and only if R ∼= F1×F2 as rings, where Fi is a field for each i ∈ {1, 2}.
Let R be a ring such that |Max(R)| ≥ 2. With the assumption that J(R) = (0), it is

proved in Section 4 of this article that ω(G(R)) < ∞ if and only if there exist n ≥ 2 and fields

F1, F2, . . . , Fn such that R ∼= F1×F2×· · ·×Fn as rings. Moreover, in such a case, it is verified

that ω(G(R)) = χ(G(R)) = 2n − 2. Moreover, an example of a ring R with |Max(R)| = 2 is

provided such that ω(G(R)) = 5 < χ(G(R)) = 6.
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2. Some basic properties of G(R)

Let R be a ring such that |Max(R)| ≥ 2. The aim of this section is to study some basic

properties of G(R).

Proposition 2.1. Let R be a ring such that |Max(R)| ≥ 2. Then G(R) is connected with

diam(G(R)) ≤ 3.

Proof. It is already noted in the introduction that C (R) is a spanning subgraph of G(R). We

know from [15, Theorem 2.4] that C (R) is connected with diam(C (R)) ≤ 3. Therefore, G(R)

is connected with diam(G(R)) ≤ 3.

Proposition 2.2. Let R be a ring such that |Max(R)| ≥ 2. If either J(R) = (0) or J(R) is

a prime ideal of R, then diam(G(R)) ≤ 2.

Proof. Let I1, I2 ∈ V (G(R)) be such that I1 ̸= I2. We claim that d(I1, I2) ≤ 2 in G(R). This

is clear if I1, I2 are adjacent in G(R). Hence, we can assume that I1 and I2 are not adjacent

in G(R). We claim that I1 ∩ I2 ̸⊆ J(R). We are assuming that either J(R) = (0) or J(R) is a

prime ideal of R. We consider the following cases.

Case(i) J(R) = (0)

Observe that I1 ∩ I2 ̸= (0). For if I1 ∩ I2 = (0), then I1 ∩ I2 = I1I2 = (0) and this implies

that I1 and I2 are adjacent in G(R). This is in contradiction to the assumption that I1 and I2

are not adjacent in G(R). Therefore, I1 ∩ I2 ̸= (0). As J(R) = (0), we get that I1 ∩ I2 ̸⊆ J(R).

Case(ii) J(R) is a prime ideal of R

Let i ∈ {1, 2}. As Ii ∈ V (G(R)), we obtain that Ii ̸⊆ J(R). Since J(R) ∈ Spec(R), we

obtain from [2, Proposition 1.11(ii)] that I1 ∩ I2 ̸⊆ J(R).

Thus I1 ∩ I2 ̸⊆ J(R). Hence, there exists m ∈ Max(R) such that I1 ∩ I2 ̸⊆ m. This implies

that Ii ̸⊆ m for each i ∈ {1, 2}. Therefore, Ii +m = R for each i ∈ {1, 2}. Hence, I1 −m− I2

is a path of length two in C (R) and this is also a path in G(R) since C (R) is a spanning

subgraph of G(R). This proves that d(I1, I2) ≤ 2 in G(R) for any I1, I2 ∈ V (G(R)). Therefore,

diam(G(R)) ≤ 2.

Remark 2.3. (i) Let R be a ring such that |Max(R)| ≥ 2. If J(R) ∈ Spec(R), then

diam(C (R)) ≤ 2.

(ii) Let R be a ring such that |Max(R)| ≥ 3. Suppose that there exist I1, I2 ∈ V (C (R)) such

that I1 and I2 are not adjacent in C (R) and I1I2 ⊆ J(R). Then diam(C (R)) = 3.

Proof. (i) Let I1, I2 ∈ V (C (R)) be such that I1 ̸= I2 and I1, I2 are not adjacent in C (R).

Using the hypothesis that J(R) ∈ Spec(R), it is noted in the proof of Case(ii) of Proposition
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2.2 that there exists m ∈ Max(R) such that I1 − m − I2 is a path of length two between I1

and I2 in C (R). Hence, diam(C (R)) ≤ 2.

(ii) Now, by assumption I1.I2 ∈ V (C (R)) are such that I1, I2 are not adjacent in C (R) and

I1I2 ⊆ J(R). Since I1 ̸⊆ J(R), I1I2 ⊆ J(R), and J(R) is a radical ideal of R, it follows that

I1 ̸= I2. We claim that d(I1, I2) = 3 in C (R). We know from [15, Theorem 2.4] that C (R) is

connected and diam(C (R)) ≤ 3. We verify that there exists no path of length two between

I1 and I2 ∈ C (R). Suppose that there exists a path of length two between I1 and I2 in C (R).

Thus there exists I ∈ V (C (R)) such that I1 − I − I2 is a path of length two in C (R). Hence,

Ii + I = R for each i ∈ {1, 2}. Let m ∈ Max(R) be such that I ⊆ m. Note that Ii + m = R

for each i ∈ {1, 2}. As I1I2 ⊆ J(R) ⊂ m, we get that either I1 ⊆ m or I2 ⊆ m. Therefore,

Ii+m ̸= R for at least one i ∈ {1, 2}. This is a contradiction. Therefore, d(I1, I2) ≥ 3 in C (R)

and so, we obtain that diam(C (R)) = 3.

Let R be a ring such that |Max(R)| ≥ 2. Suppose that J(R) = (0). In Theorem 2.4 , we

characterize rings R such that G(R) is complete.

Theorem 2.4. Let R be a ring with |Max(R)| ≥ 2. Suppose that J(R) = (0). Then the

following statements are equivalent:

(i) G(R) is complete.

(ii) R is von Neumann regular.

Proof. (i) ⇒ (ii) Assume that G(R) is complete. By hypothesis, J(R) = (0). Since nil(R) ⊆
J(R), we obtain that nil(R) = (0). Hence, R is reduced. Therefore, to prove R is von Neumann

regular, it follows from (d) ⇒ (a) of [7, Exercise 16, page 111] that it is enough to show that

dimR = 0. Let p ∈ Spec(R). Let a ∈ R\p. We claim that p + Ra = R. If Ra = Ra2, then

a = ra2 for some r ∈ R. Hence, a(1− ra) = 0 ∈ p. As a /∈ p, we obtain that 1− ra ∈ p. This

implies that p + Ra = R. Suppose that Ra ̸= Ra2. Then Ra,Ra2 ∈ V (G(R)). Since G(R)

is complete, we obtain that Ra and Ra2 are adjacent in G(R). Therefore, Ra ∩ Ra2 = Ra3.

Thus Ra2 = Ra3 and this implies that a2 = sa3 for some s ∈ R. Hence, a2(1− sa) = 0. From

a2 /∈ p, we get that 1− sa ∈ p. Therefore, p+Ra = R. This proves that p is a maximal ideal

of R for any p ∈ Spec(R). Therefore, dimR = 0 and so, R is von Neumann regular.

(ii) ⇒ (i) We are assuming that R is von Neumann regular. Let a ∈ R. We know from

(1) ⇒ (3) of [7, Exercise 29, page 113] that there exist a unit u ∈ R and an idempotent

element e of R such that a = ue. Using this fact, it can be shown that any ideal of R is a

radical ideal of R. Let I1, I2 ∈ V (G(R)) with I1 ̸= I2. We know from [2, Exercise 1.13(iii), page

9] that
√
I1I2 =

√
I1 ∩ I2. Since for any ideal I of R, I =

√
I, we obtain that I1 ∩ I2 = I1I2.

Hence, I1 and I2 are adjacent in G(R). This proves that G(R) is complete.
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Example 2.5. Let Fn be a field for each n ∈ N. Let R =
∏∞

n=1 Fn. Then G(R) is complete

but diam(C (R)) = 3.

Proof. Note that R is von Neumann regular. We know from (a) ⇒ (d) of [7, Exercise 16, page

111] that R is reduced and dimR = 0. Hence, J(R) = nil(R) = (0). It now follows from (ii) ⇒
(i) of Theorem 2.4 that G(R) is complete. We next verify that diam(C (R)) = 3. We know from

[15, Theorem 2.4] that C (R) is connected and diam(C (R)) ≤ 3. Note that Max(R) is infinite

and J(R) = (0, 0, 0, . . . , ). Let I1 = {(α1, α2, α3, . . . , ) ∈ R|αi = 0 for all i ∈ N with i odd}
and let I2 = {(0, α2, α3, α4 . . . , ) ∈ R|αi = 0 for all i ∈ N with i even}. Observe that I1, I2 ∈
V (C (R)) with I1 ̸= I2 and I1 + I2 ̸= R. Therefore, I1 and I2 are not adjacent in C (R). As

I1I2 = (0, 0, 0, . . . , ) ⊆ J(R), we obtain from the proof of Remark 2.3(ii) that d(I1, I2) ≥ 3 in

C (R) and so, it follows that diam(C (R)) = 3.

Corollary 2.6. Let R be a ring such that |Max(R)| ≥ 2. Suppose that J(R) = (0). If R is

not von Neumann regular, then diam(G(R)) = 2.

Proof. Let m ∈ Max(R). As |Max(R)| ≥ 2, it follows that m ∈ V (G(R)). Let m,m′ ∈ Max(R)

be such that m ̸= m′. As m+m′ = R, we obtain that m and m′ are adjacent in C (R) and so,

they are adjacent in G(R). Hence, G(R) admits at least one edge. We know from Proposition

2.1 that G(R) is connected. We are assuming that J(R) = (0) and R is not von Neumann

regular. Therefore, we obtain from (i) ⇒ (ii) of Theorem 2.4 that diam(G(R)) ≥ 2. Since

J(R) = (0), we know from Proposition 2.2 that diam(G(R)) ≤ 2. Therefore, we get that

diam(G(R)) = 2.

Note that J(Z) = (0) and Z is not von Neumann regular. Hence, we obtain from Corollary

2.6 that diam(G(Z)) = 2. Let R be a principal ideal domain such that |Max(R)| ≥ 2. We

verify in Remark 2.7 that C (R) = G(R).

Remark 2.7. Let R be a principal ideal domain such that |Max(R)| ≥ 2. Then C (R) = G(R).

Proof. Let T be any ring with |Max(T )| ≥ 2. It is already noted in the introduction that

C (T ) is a spanning subgraph of G(T ). Hence, it follows that C (R) is a spanning subgraph

of G(R). Let I1, I2 ∈ V (G(R)) be such that I1 ̸= I2 and they are adjacent in G(R). Hence,

I1 ∩ I2 = I1I2. Since R is a principal domain, there exist nonzero nonunits a, b ∈ R such that

I1 = Ra and I2 = Rb. As R is a principal ideal domain, it follows that Ra + Rb = Rd and

Ra ∩ Rb = R(abd ), where d is the greatest common divisor of a, b in R. From I1 ∩ I2 = I1I2,

it follows that R(abd ) = Rab. This implies that ab
d = rab for some r ∈ R and so, dr = 1.
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Therefore, d ∈ U(R). Hence, Ra+Rb = Rd = R and so, I1 and I2 are adjacent in C (R). This

shows that G(R) is a spanning subgraph of C (R). Therefore, we obtain that C (R) = G(R).

Let R be a ring such that |Max(R)| ≥ 2. Suppose that J(R) ̸= (0) and J(R) ∈ Spec(R).

We prove in Corollary 2.10 that diam(G(R)) = 2.

Lemma 2.8. Let R be a ring such that |Max(R)| ≥ 2. If G(R) is complete, then G( R
J(R)) is

complete.

Proof. It is convenient to denote R
J(R) by T . Note that |Max(T )| = |Max(R)| ≥ 2 and J(T )

is the zero ideal of T . Observe that V (G(T )) is the set of all nonzero proper ideals of T . Let

A,B ∈ V (G(T )) with A ̸= B. Note that A = I1
J(R) and B = I2

J(R) for some proper ideals I1, I2

of R with Ii ̸⊆ J(R) for each i ∈ {1, 2}. Now, I1, I2 ∈ V (G(R)) with I1 ̸= I2. By hypothesis,

G(R) is complete. Hence, I1 and I2 are adjacent in G(R). Therefore, I1 ∩ I2 = I1I2. This

implies that I1∩I2
J(R) = I1I2

J(R) and so, A ∩ B = AB. This shows that A and B are adjacent in

G(T ). Therefore, we get that G( R
J(R)) is complete.

Corollary 2.9. Let R be a ring such that |Max(R)| ≥ 2. If G(R) is complete, then R
J(R) is

von Neumann regular.

Proof. Assume that G(R) is complete. Let us denote the ring R
J(R) by T . Note that |Max(T )| =

|Max(R)| ≥ 2. We know from Lemma 2.8 that G(T ) is complete. Since J(T ) is the zero ideal

of T , we obtain from (i) ⇒ (ii) of Theorem 2.4 that T = R
J(R) is von Neumann regular.

Corollary 2.10. Let R be a ring such that |Max(R)| ≥ 2. If J(R) ∈ Spec(R), then

diam(G(R)) = 2.

Proof. It is already noted in the proof of Corollary 2.6 that G(R) has at least one edge. Let

us denote R
J(R) by T . Since J(R) ∈ Spec(R) by assumption, it follows that T is an integral

domain and moreover, we know from Proposition 2.2 that diam(G(R)) ≤ 2. As |Max(R)| ≥ 2,

it follows that J(R) is not a maximal ideal of R. Hence, T is not a field. It is well-known

that an integral domain is von Neumann regular if and only if it is a field. Therefore, T is not

von Neumann regular and so, it follows from Corollary 2.9 that diam(G(R)) ≥ 2. Hence, we

obtain that diam(G(R)) = 2.

Recall from [7, page 373] that a ring R is said to be a Hilbert ring if each prime ideal of R

is an intersection of maximal ideals of R.
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Example 2.11. Let T = K[X,Y ] be the polynomial ring in two variables X,Y over a field

K. Let I = X2T and let R = T
I . Then diam(G(R)) = 2.

Proof. We know from (1) ⇒ (7) of [7, Theorem 31.8] that T is a Hilbert ring and so, we obtain

from (1) ⇒ (3) of [7, Theorem 31.8] that R = T
I is a Hilbert ring. Therefore, nil(R) = J(R)

and as nil(R) = TX
I , we obtain that J(R) = TX

I ∈ Spec(R). It is clear that |Max(R)| ≥ 2.

Indeed, Max(R) is infinite. Now, it follows from Corollary 2.10 that diam(G(R)) = 2.

Remark 2.12. Let T, I,R be as in Example 2.11. Since J(R) ∈ Spec(R), it follows from

Remark 2.3(i) that diam(C (R)) ≤ 2. Let I1 =
TX
I and let I2 =

TX2+TY
I . Note that I1 + I2 ̸=

R and so, I1 and I2 are not adjacent in C (R). Hence, we obtain that diam(C (R)) = 2.

Observe that I1 ∩ I2 = R(XY + I) = I1I2. Therefore, I1 and I2 are adjacent in G(R) and so,

C (R) ̸= G(R).

We provide an example in Example 2.15 to illustrate that Corollary 2.10 can fail to hold if

the hypothesis that J(R) ∈ Spec(R) is omitted.

Lemma 2.13. Let R be a ring such that |Max(R)| ≥ 2. Then e(m) ≤ 2 in C (R) for each

m ∈ Max(R).

Proof. We know from [15, Theorem 2.4] that C (R) is connected and diam(C (R)) ≤ 3. Let

I ∈ V (C (R)) be such that I ̸= m. If I ̸⊆ m, then I +m = R and so, I and m are adjacent in

C (R). Suppose that I ⊂ m. Since I ∈ V (C (R)), there exists m′ ∈ Max(R) such that I ̸⊆ m′.

It is clear that I + m′ = m + m′ = R. Hence, m − m′ − I is a path of length 2 between m

and I in C (R). This proves that d(m, I) ≤ 2 in C (R) for any I ∈ V (C (R)). This shows that

e(m) ≤ 2 in C (R) for any m ∈ Max(R).

Proposition 2.14. Let R be a ring such that |Max(R)| ≥ 3. Then r(C (R)) = 2. If Max(R)

is finite, then diam(C (R)) = 3.

Proof. We know from [15, Theorem 2.4] that C (R) is connected and diam(C (R)) ≤ 3. Let

I ∈ V (C (R)). Then I is a proper ideal of R such that I ̸⊆ J(R). Let m be a maximal ideal of

R such that I ⊆ m. We consider the following cases.

Case(i) I ̸= m

As I + m = m ̸= R, it follows that I and m are not adjacent in C (R). Hence, d(I,m) ≥ 2

in C (R). Therefore, e(I) ≥ 2 in C (R).

Case(ii) I = m
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Let m′ ∈ Max(R) be such that m′ ̸= m. Consider the ideal m ∩ m′. Since |Max(R)| ≥ 3,

it is clear that m ∩ m′ ̸⊆ J(R). As m+ (m ∩ m′) = m ̸= R, we get that m and m ∩ m′ are not

adjacent in C (R). Hence, d(m,m ∩m′) ≥ 2 in C (R). Therefore, e(m) ≥ 2 in C (R).

This proves that e(I) ≥ 2 in C (R) for any I ∈ V (C (R)). Therefore, r(C (R)) ≥ 2.

We know from Lemma 2.13 that e(m) ≤ 2 in C (R) for each m ∈ Max(R). Therefore,

e(m) = 2 in C (R) for each m ∈ Max(R). This proves that r(C (R)) = 2.

Suppose that |Max(R)| ≥ 3 and Max(R) is finite. Let |Max(R)| = n and let

{m1,m2,m3, . . . ,mn} denote the set of all maximal ideals of R. Let I1 = m1 ∩ m2 and let

I2 = m1 ∩m3 ∩ · · · ∩mn. Note that I1, I2 ∈ V (C (R)) and I1 ̸= I2. As I1 + I2 ⊆ m1, it is clear

that I1 and I2 are not adjacent in C (R). Observe that I1I2 ⊆ J(R). Now, it follows from

Remark 2.3(ii) that diam(C (R)) = 3.

Example 2.15. Let n ≥ 3 and let p1, p2, p3, . . . , pn be distinct prime numbers. Let S =

Z\(∪n
i=1piZ). Let R = S−1Z. Then r(G(R)) = 2 and diam(G(R)) = 3.

Proof. Note that R is a principal ideal domain and Max(R) = {p1R, p2R, p3R, . . . , pnR}.
We know from Remark 2.7 that C (R) = G(R). Since |Max(R)| = n ≥ 3, it follows from

Proposition 2.14 that r(C (R)) = 2 and diam(C (R)) = 3. Therefore, we get that r(G(R)) = 2

and diam(G(R)) = 3.

3. When is G(R) a finite complete bipartite graph?

Let R be a ring such that |Max(R)| ≥ 2. The aim of this section is to classify rings R such

that G(R) is a finite complete bipartite graph.

Lemma 3.1. Let R be a ring such that |Max(R)| ≥ 2. If G(R) is bipartite, then |Max(R)| = 2.

Proof. It is already noted in the introduction that C (R) is a spanning subgraph of G(R). Thus

if G(R) is bipartite, then C (R) is also a bipartite graph. Hence, we obtain from (2) ⇒ (3) of

[15, Theorem 4.5] that |Max(R)| = 2.

Lemma 3.2. Let H be a spanning subgraph of a graph G = (V,E). Suppose that H is a

complete bipartite graph. If G is a bipartite graph, then H = G.

Proof. Let H be a complete bipartite graph with vertex partition V1 and V2. Let G be a

bipartite graph with vertex partition W1 and W2. Note that V = V1 ∪ V2 = W1 ∪ W2 and

V1 ∩ V2 = W1 ∩ W2 = ∅. Let x ∈ W1. Then either x ∈ V1 or x ∈ V2. Without loss of

generality, we can assume that x ∈ V1. Let x′ ∈ W1 be such that x′ ̸= x. If x′ ∈ V2, then x
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and x′ are adjacent in H and hence, they are adjacent in G. This is impossible since x and

x′ are not adjacent in G. Therefore,x′ ∈ V1 and this proves that W1 ⊆ V1. Let y ∈ V2. Now,

V2 ⊂ V = W1 ∪W2. As W1 ⊆ V1 and V1 ∩ V2 = ∅, we obtain that y ∈ W2. This shows that

V2 ⊆ W2. Let z ∈ W2 ⊂ V = V1 ∪V2. We claim that z ∈ V2. Suppose that z ∈ V1. Let y ∈ V2.

Then z and y are adjacent in H and so, they are adjacent in G. As both z and y are in W2,

they are not adjacent in G. This is a contradiction and therefore, z ∈ V2. This shows that

W2 ⊆ V2 and so, V2 = W2. Hence, we get that V1 ⊆ W1 and so, V1 = W1. If a − b is any

edge of G, then one of a, b must be in V1 and the other must be in V2. Since H is a complete

bipartite graph with vertex partition V1 and V2, we obtain that a − b is an edge of H. This

proves that H = G.

Corollary 3.3. Let R be a ring such that |Max(R)| ≥ 2. If G(R) is a bipartite graph, then

|Max(R)| = 2, G(R) is a complete bipartite graph and C (R) = G(R).

Proof. Assume that G(R) is a bipartite graph. We know from Lemma 3.1 that |Max(R)| = 2.

Note that C (R) is a spanning subgraph of G(R). Thus if G(R) is a bipartite graph, then C (R)

is also a bipartite graph. In such a case, we get from (2) ⇒ (1) of [15, Theorem 4.5] that C (R)

is a complete bipartite graph . Therefore, we obtain from Lemma 3.2 that C (R) = G(R) and

so, G(R) is a complete bipartite graph.

Lemma 3.4. Let (Ri,mi) be a quasilocal ring for each i ∈ {1, 2} and let R = R1 × R2. If

G(R) is a bipartite graph, then Ri is a field for each i ∈ {1, 2}.

Proof. Note that {M1 = m1×R2,M2 = R1×m2} is the set of all maximal ideals of R. Assume

that G(R) is a bipartite graph. First, we verify that R1 is a field. Suppose that R1 is not a

field. Then m1 ̸= (0). Note that m1 ×R2 − (0)×R2 −R1 × (0)−m1 ×R2 is a cycle of length

three in G(R). This is in contradiction to the assumption that G(R) is a bipartite graph.

Therefore, R1 is a field. Similarly, it can be shown that R2 is a field. This shows that Ri is a

field for each i ∈ {1, 2}.

Let R be a ring. Recall from [8] that R is said to satisfy descending chain condition on

principal powers if for any a ∈ R, the descending sequence of ideals Ra ⊇ Ra2 ⊇ Ra3 ⊇ · · ·
stops after a finite stage.

Let R be a ring such that |Max(R)| ≥ 2. In Theorem 3.5, we classify such rings R in

order that G(R) to be a finite bipartite graph. Theorem 3.5 of this article is motivated by [15,

Proposition 4.7].
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Theorem 3.5. Let R be a ring such that |Max(R)| ≥ 2. The following statements are

equivalent:

(i) G(R) is a finite bipartite graph.

(ii) G(R) is a bipartite graph and R satisfies d.c.c. on principal powers on elements a ∈ R

such that Ra ∈ V (G(R)).

(iii) R ∼= F1 × F2 as rings, where Fi is a field for each i ∈ {1, 2}.

Proof. (i) ⇒ (ii) As G(R) is a finite bipartite graph, it follows that V (G(R)) is finite. Let

a ∈ R be such that Ra ∈ V (G(R)). Then a ∈ NU(R)\J(R). Then an ∈ NU(R)\J(R) for

all n ≥ 1 and so, Ran ∈ V (G(R)) for all n ≥ 1. Since V (G(R)) is finite, we obtain that there

exists n ≥ 1 such that Ran = Raj for all j ≥ n.

(ii) ⇒ (iii) Now, by assumption, G(R) is a bipartite graph. We know from Corollary 3.3 that

|Max(R)| = 2 and C (R) = G(R) is a complete bipartite graph. Let {M1,M2} denote the set

of all maximal ideals of R. Let a ∈ M1\M2. Observe that Ra ∈ V (G(R)). As we are assuming

that R satisfies d.c.c. on principal powers on elements x ∈ R such that Rx ∈ V (G(R)), we get

that there exists n ≥ 1 such that Ran = Raj for all j ≥ n. This implies that an = ra2n for

some r ∈ R. Therefore, e = ran is a nontrivial idempotent element of R. Hence, the mapping

f : R → Re × R(1 − e) defined by f(x) = (xe, x(1 − e)) is an isomorphism of rings. Let us

denote the ring Re by R1 and the ring R(1 − e) by R2. Now, R ∼= R1 × R2 as rings. Since

|Max(R)| = 2, it follows that Ri is a quasilocal ring for each i ∈ {1, 2}. As G(R1 × R2) is a

bipartite graph, we obtain from Lemma 3.4 that Ri is a field for each i ∈ {1, 2}. Let i ∈ {1, 2}.
With Fi = Ri, we obtain that Fi is a field and R ∼= F1 × F2 as rings.

(iii) ⇒ (i) Let us denote the ring F1 × F2 by T , where Fi is a field for each i ∈ {1, 2}. Note

that V (G(T )) = {(0) × F2, F1 × (0)}. From ((0) × F2) + (F1 × (0)) = T , we get that G(T ) is
a complete graph on two vertices. Since R ∼= T as rings, we obtain that G(R) is a complete

graph on two vertices and hence, it is a finite bipartite graph.

In Example 3.6, we mention an example of a ring R which illustrates that (ii) ⇒ (iii) of

Theorem 3.5 can fail to hold if the hypothesis that R satisfies d.c.c. on principal powers on

elements a ∈ R with a ∈ V (G(R)) is omitted. The example 3.6 mentioned here is [15, Example

4.10].

Example 3.6. Let p, q be distinct prime numbers. Let S = Z\(pZ ∪ qZ). Let R = S−1Z.
Then G(R) is a complete bipartite graph and R has no nontrivial idempotent element.

Proof. Note that R is a semilocal principal ideal domain with Max(R) = {pR, qR}. We know

from Remark 2.7 that C (R) = G(R). Since |Max(R)| = 2, we know from [15, Lemma 4.1]
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that C (R) is a complete bipartite graph. This shows that G(R) is a complete bipartite graph.

As R is an integral domain, we obtain that 0 and 1 are the only idempotent elements of R.

Hence, R ̸∼= R1 ×R2 as rings for any quasilocal rings R1 and R2.

Let I be an ideal of a ring R. As in [12], we denote {m ∈ Max(R)|m ⊇ I} by M(I).

Remark 3.7. Let R be a ring with |Max(R)| = 2. Let {m1,m2} denote the set of all maximal

ideals of R. We know from [15, Lemma 4.1] that C (R) is a complete bipartite graph with

vertex partition V1 and V2, where V1 is the set of all ideals I of R such that M(I) = {m1}
and V2 is the set of all ideals J of R such that M(J) = {m2}. It is noted in [15, Corollary

4.2] that 1 ≤ diam(C (R)) ≤ 2. It is already observed in the introduction that C (R) is a

spanning subgraph of G(R). Therefore, we obtain that 1 ≤ diam(G(R)) ≤ 2. In Corollary 3.9,

we classify rings R such that diam(G(R)) = 1, that is, we classify rings R such that G(R) is

complete.

Theorem 3.8. Let (Ri,mi) be a quasilocal ring for each i ∈ {1, 2} and let R = R1 ×R2. The

following statements are equivalent:

(i) G(R) is complete.

(ii) For each i ∈ {1, 2}, mi is principal and m2
i = (0).

Proof. (i) ⇒ (ii) Assume that G(R) is complete. First, we verify that m1 is principal and

m2
1 = (0). This is clear if m1 = (0). Suppose that m1 ̸= (0). Let a ∈ m1\{0}. We assert

that m1 = R1a. If m1 ̸= R1a, then the ideals I1 = R1a × R2 and I2 = m1 × R2 are distinct

members of V (G(R)). Since we are assuming that G(R) is complete, we get that I1∩I2 = I1I2.

This implies that R1a = m1a and so, a = xa for some x ∈ m1. Hence, a(1 − x) = 0. Since

1− x ∈ U(R1), we get that a = 0. This is in contradiction to the fact that a ̸= 0. This proves

that m1 = R1a for any a ∈ m1\{0}. Let a ∈ m1\{0}. If a2 ̸= 0, then R1a = R1a
2. This implies

that a = xa2 for some x ∈ R1 and so, a(1 − xa) = 0. Since 1 − xa ∈ U(R1), we obtain that

a = 0. This is a contradiction. Therefore, m1 is principal and m2
1 = (0). Similarly, it can be

shown that m2 is principal and m2
2 = (0).

(ii) ⇒ (i) Assume that mi is principal and m2
i = (0) for each i ∈ {1, 2}. Note that |Max(R)| =

2 and {M1 = m1 ×R2,M2 = R1 ×m2} is the set of all maximal ideals of R. We consider the

following cases.

Case(1) mi = (0) for each i ∈ {1, 2}
In this case, both R1 and R2 are fields. Note that V (G(R)) = {(0) × R2, R1 × (0)} and

((0)×R2) + (R1 × (0)) = R. Hence, (0)×R2 and R1 × (0) are adjacent in C (R) and so, they

are adjacent in G(R). Therefore, G(R) is a complete graph on two vertices.
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Case(2) m1 ̸= (0) but m2 = (0)

Note that R2 is a field. As m1 is a nonzero principal ideal of R1 with m2
1 = (0), it follows that

m1 is the only nonzero proper ideal of R1. Observe that V (G(R)) = {(0)×R2,m1×R2, R1×(0)}.
Observe that C (R) is a complete bipartite graph with vertex partition V1 = {M2

1 = (0) ×
R2,M1 = m1 × R2} and V2 = {M2 = R1 × (0)}. As C (R) is a spanning subgraph of G(R),

it follows that each member of V1 is adjacent to each member of V2 in G(R). Observe that

M1 ∩M2
1 = M2

1 = M3
1. Therefore, there is an edge of G(R) joining M1 and M2

1. This proves

that G(R) is the cycle Γ of length three given by Γ : M1 −M2 −M2
1 −M1 and so, G(R) is a

complete graph on three vertices.

Case(3) m1 = (0) but m2 ̸= (0)

Since m2 is a nonzero principal ideal of R2 with m2
2 = (0), it follows as in Case(2) that G(R)

is a complete graph on three vertices.

Case(4) mi ̸= (0) for each i ∈ {1, 2}
Let i ∈ {1, 2}. Since mi is a nonzero principal ideal of Ri with m2

i = (0), it follows that

mi is the only nonzero proper ideal of Ri. Note that V (G(R)) = {M1 = m1 × R2,M
2
1 =

(0) × R2,M2 = R1 × m2,M
2
2 = R1 × (0)}. Observe that C (R) is a complete bipartite graph

with vertex partition V1 = {M1,M
2
1} and V2 = {M2,M

2
2}. Since C (R) is a spanning subgraph

of G(R), it follows that each member of V1 is adjacent to each member of V2 in G(R). Moreover,

it follows as in Case(2) that Mi−M2
i is an edge of G(R) for each i ∈ {1, 2}. Therefore, we get

that G(R) is a complete graph on four vertices.

This proves that G(R) is complete.

Corollary 3.9. Let R be a ring such that |Max(R)| = 2. The following statements are

equivalent:

(i) G(R) is complete.

(ii) R is isomorphic to one of the following rings:

(a) F1 × F2, where Fi is a field for each i ∈ {1, 2}.
(b) F1 ×R2, where F1 is a field and (R2,m2) is a SPIR with m2 ̸= (0) but m2

2 = (0).

(c) R1 ×R2, where (Ri,mi) is a SPIR with mi ̸= (0) but m2
i = (0) for each i ∈ {1, 2}.

Proof. (i) ⇒ (ii) Let {M1,M2} denote the set of all maximal ideals of R. We assert that R

admits at least one nontrivial idempotent. Let a ∈ M1\M2. Then for all n ≥ 2, an ∈ M1\M2.

Hence, Ran ∈ V (G(R)) for all n ≥ 1. If Ra = Ra2, then a = ra2 for some r ∈ R. In such

a case, ra is a nontrivial idempotent element of R. Suppose that Ra ̸= Ra2. Since G(R) is

complete, the vertices Ra and Ra2 are adjacent in G(R). Hence, Ra ∩ Ra2 = Ra3 and so,

Ra2 = Ra3. Therefore, Ra2 = Ra4. This implies that a2 = sa4 for some s ∈ R and so, sa2

is a nontrivial idempotent element of R. This shows that there exists a nontrivial idempotent
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element e of R. Note that the mapping f : R → Re×R(1− e) defined by f(r) = (re, r(1− e))

is an isomorphism of rings. Let us denote the ring Re by R1 and the ring R(1 − e) by R2.

Let us denote the ring R1 ×R2 by T . Since R ∼= T as rings, we obtain that G(T ) is complete.

As |Max(T )| = 2, it follows that Ri admits a unique maximal ideal for each i ∈ {1, 2}. Let

mi denote the unique maximal ideal of Ri for each i ∈ {1, 2}. Now, we know from (i) ⇒ (ii)

of Theorem 3.8 that mi is principal and m2
i = (0) for each i ∈ {1, 2}. If mi = (0) for each

i ∈ {1, 2}, then Ri is a field for each i ∈ {1, 2}. With Fi = Ri for each i ∈ {1, 2}, we get that

R is isomorphic to the ring mentioned in (ii)(a). Suppose that exactly one between m1 and

m2 is the zero ideal. Without loss of generality, we can assume that m1 = (0). Then R1 is

a field and (R2,m2) is a SPIR with m2 ̸= (0) but m2
2 = (0). In this case, with F1 = R1, we

obtain that R is isomorphic to the ring mentioned in (ii)(b). If mi ̸= (0) for each i ∈ {1, 2},
then (Ri,mi) is a SPIR with mi ̸= (0) but m2

i = (0) for each i ∈ {1, 2}. and R is isomorphic

to the ring mentioned in (ii)(c).

(ii) ⇒ (i) Assume that R is isomorphic to one of the rings mentioned in (ii)(a), (b) or (c). Let

F1, F2 be fields. Let us denote F1 × F2 by T1. We know from the proof of (ii) ⇒ (i) Case(1)

of Theorem 3.8 that G(T1) is a complete graph on two vertices. Let F1 be a field and (R2,m2)

be a SPIR with m2 ̸= (0) but m2
2 = (0). Let us denote the ring F1 × R2 by T2. We know

from the proof of (ii) ⇒ (i) Case(3) of Theorem 3.8 that G(T2) is a complete graph on three

vertices. Suppose that (Ri,mi) be a SPIR with mi ̸= (0) but m2
i = (0) for each i ∈ {1, 2}. Let

us denote the ring R1 ×R2 by T3. We know from the proof of (ii) ⇒ (i) Case(4) of Theorem

3.8 that G(T3) is a complete graph on four vertices. This proves that G(R) is complete.

4. On the clique number and the chromatic number of G(R)

Let R be a ring with |Max(R)| ≥ 2. The aim of this section is to discuss some results

regarding ω(G(R)) and χ(G(R)).

Remark 4.1. Let R be a ring with |Max(R)| ≥ 2. Suppose that ω(G(R)) < ∞. It is already

noted in the introduction that C (R) is a spanning subgraph of G(R). Hence, ω(C (R)) is also

finite. If ω(C (R)) = n, then we know from [15, Theorem 3.1] that |Max(R)| = n = χ(C (R)).

Thus if ω(G(R)) < ∞, then R is semiquasilocal. In Example 4.2, we provide an example of a

semiquasilocal ring R such that G(R) admits an infinite clique.

Example 4.2. Let V be an infinite dimensional vector space over a field K. Let T = K ⊕ V

be the ring obtained on using Nagata’s principle of idealization. Let R = T × T . Then

|Max(R)| = 2 and G(R) admits an infinite clique.
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Proof. Note that T is quasilocal with m = (0) ⊕ V as its unique maximal ideal and m2 =

(0)⊕ (0). Hence, R = T × T has {M1 = m× T,M2 = T ×m} as its set of all maximal ideals.

This shows that |Max(R)| = 2. Since V is an infinite dimensional vector space over K, it is

possible to find vi ∈ V for each i ∈ N such that {vi|i ∈ N} is linearly independent over K.

For each i ∈ N, let us denote the ideal (0) ⊕Kvi of T by Ii. Let i, j ∈ N, i ̸= j. Since vi, vj

are linearly independent over K, it follows that Kvi ∩Kvj = (0) and so, Ii ∩ Ij = (0) ⊕ (0).

Hence, IiIj = Ii ∩ Ij = (0) ⊕ (0). For each i ∈ N, let us denote the ideal Ii × T of R by Ai.

It is clear that Ai is a proper ideal of R and Ai ̸⊆ J(R) for each i ∈ N. Hence, Ai ∈ V (G(R))

for each i ∈ N. Let i, j be distinct elements of N. From IiIj = Ii ∩ Ij , it follows that

AiAj = IiIj×T = (Ii∩Ij)×T = Ai∩Aj . Hence, the subgraph of G(R) induced on {Ai|i ∈ N}
is an infinite clique.

In Proposition 4.3 we classify rings R with |Max(R)| ≥ 2 and J(R) = (0) such that

ω(G(R)) < ∞.

Proposition 4.3. Let R be a ring such that |Max(R)| ≥ 2 and suppose that J(R) = (0). The

following statements are equivalent:

(i) ω(G(R)) < ∞.

(ii) G(R) does not contain any infinite clique.

(iii) There exist n ∈ N with n ≥ 2 and fields F1, F2 . . . , Fn such that R ∼= F1 × F2 × · · · × Fn

as rings.

Moreover, if any one of the statements (i), (ii) or (iii) holds (and hence, all the three hold),

then ω(G(R)) = χ(G(R)) = 2n − 2.

Proof. (i) ⇒ (ii) This is clear.

(ii) ⇒ (iii) We claim that Max(R) is finite. Suppose that Max(R) is infinite. If m is any

element of Max(R), then m ∈ V (G(R)). Now, for any distinct m,m′ ∈ Max(R), m+m′ = R.

Hence, m and m′ are adjacent in C (R) and so, they are adjacent in G(R). Therefore, the

subgraph of G(R) induced on Max(R) is an infinite clique. This is in contradiction to the

assumption that G(R) does not contain any infinite clique. Hence, Max(R) is finite. Let

|Max(R)| = n. It is clear that n ≥ 2. Let {m1,m2, . . . ,mn} denote the set of all maximal

ideals of R. By hypothesis, J(R) = (0). Hence, ∩n
i=1mi = (0). Now, it follows from the

Chinese remainder theorem [2, Proposition 1.10(ii) and (iii)] that the mapping f : R →
R
m1

× R
m2

×· · ·× R
mn

given by f(r) = (r+m1, r+m2, . . . , r+mn) is an isomorphism of rings. For

each i ∈ {1, 2, . . . , n}, let us denote the field R
mi

by Fi. It is clear that R ∼= F1 × F2 × · · · × Fn

as rings.
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(iii) ⇒ (i) Let us denote the ring F1 × F2 × · · · × Fn by T . Note that T is a von Neumann

regular ring. Hence, we obtain from (ii) ⇒ (i) of Theorem 2.4 that G(T ) is complete. Since

V (G(T )) is the set of all nonzero proper ideals of T , it follows that G(T ) is a complete graph

on 2n − 2 vertices. From R ∼= T as rings, we get that G(R) is a complete graph on 2n − 2

vertices and so, ω(G(R)) = χ(G(R)) = 2n − 2.

The moreover part of this proposition is already verified in (iii) ⇒ (i) of this proposition.

In Example 4.4, we provide an example of a ring R such that |Max(R)| = 2 with ω(G(R)) =

5 < χ(G(R)) = 6.

Example 4.4. Let T = Z4[X,Y, Z] be the polynomial ring in three variables X,Y, Z over

Z4. Let I be the ideal of T generated by {X2 − 2, Y 2 − 2, Z2, XY, Y Z − 2, XZ, 2X, 2Y, 2Z}.
Let S = T

I and let R = S × F , where F is a field. Then |Max(R)| = 2 and ω(G(R)) = 5 <

χ(G(R)) = 6.

Proof. The ring S mentioned in Example 4.4 is an interesting and inspiring example due to

D.D. Anderson and M. Nasser [1] which answered a conjecture of I. Beck [4] in the negative.

It was already noted in [1] that S is a finite local ring with m = TX+TY+TZ
I as its unique

maximal ideal, m2 = S(2 + I) = {0 + I, 2 + I}, and m3 = (0 + I). Since R = S × F , it

is clear that |Max(R)| = 2 and {M1 = m × F,M2 = S × (0)} is the set of all maximal

ideals of R. It is convenient to denote X + I by x, Y + I by y, and Z + I by z. It was

already observed in the proof of [6, Proposition 2.1] that the set of all nonzero proper ideals

of S equals {S(2 + I), Sx, Sy, Sz, S(x + y), S(y + z), S(x + z), S(x + y + z), Sx + Sy, Sy +

Sz, Sx + Sz, Sx + S(y + z), Sy + S(z + x), Sz + S(x + y), Sx + Sy + Sz}. Observe that

m2 = S(2+I) is the unique minimal ideal of S. Note that J(R) = m× (0) and V (G(R)) equals

{m × F, (0 + I) × F, S × (0), Sx × F, Sy × F, Sz × F, S(x + y) × F, S(y + z) × F, S(x + z) ×
F, S(x+ y + z)× F, (Sx+ Sy)× F, (Sy + Sz)× F, (Sx+ Sz)× F, (Sx+ S(y + z))× F, (Sy +

S(x+ z))× F, (Sz + S(x+ y))× F, S(2 + I)× F}.
We next proceed to verify that ω(G(R)) ≤ 5. It is convenient to denote {Sx×F, Sy×F, Sz×

F} by W1, {S(x+y)×F, S(y+z)×F, S(x+z)×F, (Sx+Sy)×F, (Sy+Sz)×F, (Sx+Sz)×F}
by W2, and {(Sx + S(y + z)) × F, (Sy + S(x + z)) × F, (Sz + S(x + y)) × F} by W3. Let

W ⊆ V (G(R)) be such that the subgraph of G(R) induced on W is a clique.

Suppose that m2×F = S(2+I)×F ∈ W . As m2 is the unique minimal ideal of S, it follows

that for any nonzero proper ideal B of S, m2∩B = m2 but m2B = (0+I). Hence, S(2+I)×F

is not adjacent in G(R) to any vertex of the form B×F , where B is a nonzero proper ideal of

S. Hence, the only possible vertices that can belong to W are m2×F, (0+ I)×F , and S× (0).

Thus if S(2 + I)× F ∈ W , then |W | ≤ 3.
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Hereafter, we assume that m2 × F /∈ W .

Suppose that m × F ∈ W . Let B1, B2 be distinct nonzero proper ideals of S such that

B1 ∩ B2 ̸⊆ m2. Note that Bi ̸⊆ m2 for each i ∈ {1, 2}. Then (B1 × F ) ∩ (B2 × F ) =

(B1 ∩ B2)× F ̸⊆ m2 × F , whereas (B1 × F )(B2 × F ) = B1B2 × F ⊆ m2 × F . Hence, B1 × F

and B2 × F are not adjacent in G(R). Therefore, at most one between B1 × F and B2 × F

can be in W . In particular, if C1 and C2 are nonzero proper ideals of S with Ci ̸⊆ m2 for each

i ∈ {1, 2} and C1 ⊂ C2, then at most one between C1 × F and C2 × F can be in W . Thus

if m × F ∈ W , then the possible vertices that can be in W are m × F, S × (0), and (0) × F .

Therefore, |W | ≤ 3.

Hereafter, we assume that m× F /∈ W .

Since S is a local ring, it follows that if m1,m2 ∈ m\m2 are such that Sm1 ̸= Sm2, then

Sm1 ∩ Sm2 ⊆ m2. Hence, if m1m2 ̸= 0 + I, then Sm1m2 = Sm1 ∩ Sm2. Therefore, Sm1 × F

and Sm2 × F are adjacent in G(R). If m1m2 = (0) + I, then as m2 × F ⊆ (Sm1 × F ) ∩
(Sm2 × F ), it follows that Sm1 × F and Sm2 × F are not adjacent in G(R). Since Sy ̸= Sz

and yz = 2 + I ̸= 0 + I, we get that Sy × F and Sz × F are adjacent in G(R). Observe that

m2×F ⊆ (Sx×F )∩ (Sy×F )∩ (Sz×F ), whereas Sxy×F = (0+ I)×F = Sxz×F . Hence,

we get that (Sx× F ) ∩ (Sy × F ) ̸= Sxy × F and (Sx× F ) ∩ (Sz × F ) ̸= Sxz × F and so, in

G(R), Sx × F is not adjacent to any of the members from {Sy × F, Sz × F}. Thus if either

Sy × F ∈ W or Sz × F ∈ W , then Sx× F cannot be in W .

As (x + y)(y + z) = 0 + I, at most one between S(x+ y) × F and S(y + z) × F can be in

W . Hence, |W ∩ {S(x + y) × F, S(y + z) × F, S(x + z) × F}| ≤ 2. It is clear that at most

one among (Sx + Sy) × F, (Sy + Sz) × F , and (Sx + Sz) × F can belong to W . Note that

(x + y)(x + z) = 0 + I and so, S(x + y) × F and S(x + z) × F are not adjacent in G(R). It

follows from (y + z)(x+ z) = 2 + I ̸= 0 + I that S(y + z)× F and S(x+ z)× F are adjacent

in G(R). Suppose that both S(y + z)× F and S(x+ z)× F are in W . Then no member from

{(Sx+Sy)×F, (Sy+Sz)×F, (Sx+Sz)×F} can belong to W . This shows that |W ∩W2| ≤ 2.

Note that x+ y+ z is in each member of W3. Hence, at most one element of W3 can belong

to W . Moreover, if S(x+ y + z)× F ∈ W , then W ∩W3 = ∅.
Suppose that both Sy × F and Sz × F are in W . Note that y(y + z) = y2 + yz =

(2+ I) + (2+ I) = 0+ I. Observe that 0 + I = xy = xz = y(y+ z) = y(x+ y+ z) = z(x+ z).

Also, as Sy × F ⊂ (Sx+ Sy)× F, Sy × F ⊂ (Sy + Sz)× F , and Sz × F ⊂ (Sx+ Sz)× F , it

follows that the only possible member of W2 that can belong to W is S(x+ y)×F . Moreover,

it is clear that Sx× F and S(x+ y + z)× F cannot be in W and furthermore, W ∩W3 = ∅.
From the above given arguments, it is clear that the only possible members of V (G(R)) that

can be in W are Sy × F, Sz × F, S(x+ y)× F, (0)× F , and S × (0). Hence, |W | ≤ 5.

Hereafter, we assume that at most one between Sy × F and Sz × F is in W .
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Suppose that Sy × F ∈ W but Sz × F /∈ W .

It follows as in the previous paragraph that none of the members from {Sx×F, S(y+ z)×
F, S(x+y+z)×F, (Sx+Sy)×F, (Sy+Sz)×F, (Sx+S(y+z))×F, (Sy+S(x+z))×F} can

be in W . Note that y(x+ y) = y(x+ z) = 2+ I ̸= 0+ I and (x+ y)(x+ z) = 0+ I. It is clear

that at most two members from {S(x+y)×F, S(x+z)×F, (Sx+Sz)×F, (Sz+S(x+y))×F}
can be in W . From the above discussion, it follows that W ⊆ {Sy × F} ∪ (W ∩ {S(x + y) ×
F, S(x+ z)×F, (Sx+Sz)×F, (Sz+S(x+ y))×F}∪{(0)×F, S× (0)}. Therefore, we obtain
that |W | ≤ 5.

Suppose that Sz × F ∈ W but Sy × F /∈ W .

It follows from the reasons mentioned earlier in the verification of this example that none of

the members from {Sx×F, S(x+z)×F, (Sy+Sz)×F, (Sx+Sz)×F, (Sz+S(x+y))×F} can

be in W . Observe that z(x+y) = z(y+ z) = 2+ I ̸= 0+ I. Hence, we obtain that the possible

members from W2 that can belong to W are S(x + y) × F, (Sx + Sy) × F, S(y + z) × F and

so, we obtain that |W ∩W2| ≤ 1. Note that z(x+ y + z) = 2 + I ̸= 0+ I. Hence, Sz × F and

S(x+y+z)×F are adjacent in G(R). If S(x+y+z)×F ∈ W , then it is already observed that

W ∩W3 = ∅. Thus in this case, W ⊆ {Sz×F, S(x+y+z)×F}∪ (W ∩W2)∪{(0)×F, S× (0)}
and so, |W | ≤ 5. Suppose that S(x+ y + z)× F /∈ W . It is already noted that |W ∩W3| ≤ 1.

In this case, W ⊆ {Sz×F}∪ (W ∩W2)∪ (W ∩W3)∪{(0)×F, S× (0)}. Therefore, we obtain
that |W | ≤ 5.

Hereafter, we assume that both Sy × F and Sz × F are not in W .

Suppose that Sx×F ∈ W . Then none of the members from {S(y+z)×F, (Sx+Sy)×F, (Sx+

Sz)×F, (Sy+Sz)×F, (Sx+S(y+z))×F} can belong toW . It is easy to verify that the possible

members from W2 that can be in W are S(x+y)×F and S(x+z)×F . Since S(x+y)×F and

S(x+z)×F are not adjacent in G(R), we obtain that |W ∩W2| ≤ 1. From x(x+y+z) ̸= 0+I,

it follows that Sx×I and S(x+y+z)×F are adjacent in G(R). If S(x+y+z)×F ∈ W , then

W∩W3 = ∅. Therefore, in this case, W ⊆ {Sx×F, S(x+y+z)×F}∪(W∩W2)∪{(0)×F, S×(0)}
and so, |W | ≤ 5. Suppose that S(x+ y + z)× F /∈ W . It is already noted that |W ∩W3| ≤ 1.

Hence, in this case, we get that W ⊆ {Sx× F} ∪ (W ∩W2) ∪ (W ∩W3) ∪ {(0)× F, S × (0)}
and so, |W | ≤ 5.

Hereafter, we assume that Sx× F /∈ W .

Note that |W ∩W2| ≤ 2 and |W ∩W3| ≤ 1. If S(x + y + z) × F ∈ W , then W ∩W3 = ∅
and in this case, W ⊆ {S(x + y + z) × F} ∪ (W ∩W2) ∪ {(0) × F, S × (0)} and so, |W | ≤ 5.

Suppose that S(x+ y+ z)×F /∈ W . Then as W ⊆ (W ∩W2)∪ (W ∩W3)∪{(0)×F, S× (0)},
it follows that |W | ≤ 5.

This proves that if W is any subset of V (G(R)) such that the subgraph of G(R) induced on

W is a clique, then |W | ≤ 5.
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Observe that the subgraph of G(R) induced on {Sx × F, S(x + y) × F, S(x + y + z) ×
F, (0)×F, S × (0)} is a clique on five vertices and so, ω(G(R)) ≥ 5. Therefore, we obtain that

ω(G(R)) = 5.

Now, χ(G(R)) ≥ ω(G(R)) = 5. We claim that χ(G(R)) > 5. Suppose that χ(G(R)) = 5.

Then the vertices of G(R) can be properly colored using a set of five distinct colors. Let

{c1, c2, c3, c4, c5} be a set of five distinct colors that are used for a proper coloring of the vertices

of G(R). Let i ∈ {1, 2, 3, 4, 5} and let Vi = {I ∈ V (G(R))|I receives color ci}. Note that Vi ̸= ∅
for each i ∈ {1, 2, 3, 4, 5}, Vi∩Vj = ∅ for all distinct i, j ∈ {1, 2, 3, 4, 5}, and V (G(R)) = ∪5

i=1Vi.

Since the subgraph of G(R) induced on W = {(0)×F, S×(0), Sx×F, S(x+y)×F, S(x+y+z)×
F} is a clique, no two members fromW can be in the same Vi for any i ∈ {1, 2, 3, 4, 5}. Without

loss of generality, we can assume that (0)×F ∈ V1, S×(0) ∈ V2, Sx×F ∈ V3, S(x+y)×F ∈ V4,

and S(x + y + z) × F ∈ V5. Since (0) × F (respectively, S × (0)) is adjacent in G(R) to all

of its other vertices, we obtain that V1 = {(0) × F} and V2 = {S × (0)}. Since Sz × F is

adjacent to both S(x+ y)×F and S(x+ y+ z)×F but it is not adjacent to Sx×F in G(R),

we get that Sz × F must be in V3. Note that S(x+ z)× F is adjacent to Sx× F and is not

adjacent to any of the members from {S(x + y) × F, S(x + y + z) × F} in G(R). Therefore,

S(x+z)×F ∈ V4∪V5. Suppose that S(x+z)×F ∈ V4. As S(y+z)×F is adjacent to each one

of the members from {Sz×F, S(x+ z)×F, S(x+ y+ z)×F} in G(R), S(y+ z)×F /∈ ∪5
i=1Vi.

This is a contradiction. Suppose that S(x+ z)×F ∈ V5. Since Sy×F is adjacent to each one

of the members from {Sz×F, S(x+y)×F, S(x+z)×F} in G(R), we get that Sy×F /∈ ∪5
i=1Vi.

This is a contradiction. Therefore, χ(G(R)) ≥ 6.

We next verify that χ(G(R)) ≤ 6. Let {c1, c2, c3, c4, c5, c6} be a set consisting of six

distinct colors. We now show that the vertices of G(R) can be properly colored using

{c1, c2, c3, c4, c5, c6}. Let us assign the color c1 to (0) × F , the color c2 to S × (0), the color

c3 to Sx × F , the color c4 to S(x + y) × F , the color c5 to S(x + y + z) × F , the color c3 to

each one of the members from {Sz × F, (Sx + Sz) × F,m × F,m2 × F}, the color c4 to each

one of the members from {S(x+ z)× F, (Sz + S(x+ y))× F}, the color c5 to each one of the

members from {Sy × F, (Sy + S(x + z)) × F}, and the color c6 to each one of the members

from {(Sx+ Sy)× F, S(y+ z)× F, (Sy+ Sz)× F, (Sx+ S(y+ z))× F}. Note that the above

assignment of six colors to the vertices of G(R) is proper and so, χ(G(R)) ≤ 6. Therefore, we

obtain that χ(G(R)) = 6.
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