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Abstract. A subset W of the vertices of a graph G is a resolving set for G when for each

pair of distinct vertices u, v ∈ V (G) there exists w ∈ W such that d(u,w) ̸= d(v, w). The

cardinality of a minimum resolving set for G is the metric dimension of G. This concept

has applications in many diverse areas including network discovery, robot navigation, image

processing, combinatorial search and optimization. The problem of finding metric dimension

is NP-complete for general graphs but the metric dimension of trees can be obtained using

a polynomial time algorithm. In this paper, we investigate the metric dimension of Cayley

graphs on dihedral groups and we characterize a family of them.

1. Introduction

Let Γ = (V,E) be a simple and connected graph with vertex set V and edge set E. The

distance between two vertices x, y ∈ V is the length of a shortest path between them and is

denoted by d(x, y). If d(x, y) = 1, then for convenient we write x ∼ y. The neighborhood of

x is N(x) = {y : x ∼ y}. A walk consists of an alternating sequence of vertices and edges
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consecutive elements of which are incident, that begins and ends with a vertex. A walk is said

to be closed if its endpoints are the same. The length of a walk is the number of its edges. An

odd walk is a walk whose length is an odd number. It is well known that a graph is bipartite if

and only if it does not contain any odd walk. A matching or independent edge set in a graph

is a set of edges without common vertices. In a graph of even ordr n = |V (G)|, each matching

with n
2 edges is called a perfect matching. For an ordered subset W = {w1, w2, . . . , wk} of

vertices and a vertex v ∈ V , the k-vector r(v|W ) := (d(v, w1), d(v, w2), . . . , d(v, wk)) is called

the metric representation of v with respect to W . The set W is called a resolving set for

Γ if distinct vertices of Γ have distinct representations with respect to W . Each minimum

resolving set is a basis and the metric dimension of Γ, dimM (Γ), is the cardinality of a basis

for Γ. These concepts were introduced by Slater in 1975 when he was working with U.S.

Sonar and Coast Guard Loran stations and he described the usefulness of these concepts, (see

[15]). Independently, Harary and Melter discovered these concepts, (see [7]). This concept

has applications in many areas including network discovery and verification (see [2]), robot

navigation (see [11]), problems of pattern recognition and image processing (see [12]), coin

weighing problems (see [14]), strategies for the Mastermind game (see [5]), combinatorial

search and optimization (see [14]). Finding families of graphs with constant metric dimension

or characterizing n-vertex graphs with a specified metric dimension are fascinating problems

and attracts the attention of many researchers. The problem of finding metric dimension is

NP-Complete for general graphs but the metric dimension of trees can be obtained using a

polynomial time algorithm. It is not hard to see that for each n-vertex graph Γ we have

1 ≤ dimM (Γ) ≤ n− 1. Chartrand et al. in [6] proved that for n ≥ 2, dimM (Γ) = n− 1 if and

only if Γ is the complete graph Kn. The metric dimension of each complete t-partite graph

with n vertices is n− t. They also provided a characterization of graphs of order n with metric

dimension n − 2, (see [6]). Graphs of order n with metric dimension n − 3 are characterized

in [9]. Khuller et al. (see [11]) and Chartrand et al. (see [6]) proved that dimM (Γ) = 1 if and

only if Γ is a path Pn. Salman et al. studied this parameter for the Cayley graphs on cyclic

groups, (see [13]). Imran studied the metric dimension of barycentric subdivision of Cayley

graphs in [8]. Each cycle graph Cn is a 2-dimensional graph (dimM (Cn) = 2). All of 2-trees

with metric dimension two are characterized in [3]. Moreover, in [11] and [16] some properties

of 2-dimensional graphs are obtained.

Theorem 1.1. [11] Let Γ be a 2-dimensional graph. If {u, v} is a basis for Γ, then

(1) there is a unique shortest path P between u and v,

(2) the degrees of u and v are at most three,

(3) the degree of each internal vertex on P is at most five.
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The Möbius Ladder graph Mn is a cubic circulant graph with an even number n of vertices

formed from an n-cycle by connecting opposite pairs of vertices in the cycle. For the metric

dimension of Möbius Ladders we have the following result.

Theorem 1.2. [1] Let n ≥ 8 be an even number. The metric dimension of each Mobius Ladder

Mn is 3 or 4. Specially, dimM (Mn) = 3 when n ≡ 2 (mod 8).

Cáceres et al. studied the metric dimension of the Cartesian product of graphs. Recall that

the Cartesian product of two graphs G1 and G2, denoted by G1 ×G2, is a graph with vertex

set V (G1) × V (G2) := {(u, v) : u ∈ V (G1), v ∈ V (G2)}, in which (u, v) is adjacent to (u′, v′)

whenever u = u′ and vv′ ∈ E(G2), or v = v′ and uu′ ∈ E(G1).

Theorem 1.3. [4] Let Pm be a path on m ≥ 2 vertices and Cn be a cycle on n ≥ 3 vertices.

Then the metric dimension of each prism Pm × Cn is given by

dimM (Pm × Cn) =

2 n odd,

3 n even.

Let G be a group and let S be a subset of G that is closed under taking inverse and does

not contain the identity element, say e. Recall that the Cayley graph Cay(G,S) is a graph

whose vertex set is G and two vertices u and v are adjacent in it when uv−1 ∈ S. Since S is

inverse-closed (S = S−1) and does not contain the identity, Cay(G,S) is a simple graph. It

is well known that Cay(G,S) is a connected graph if and only if S is a generating set for G.

Since Cay(G,S) is |S|-regular, part (2) of Theorem 1.1 directly implies the following result.

Corollary 1. If S is a subset of D2n such that e /∈ S = S−1 and |S| ≥ 4, then we have

dimM (Cay(D2n, S)) ≥ 3.

For more results in this subject or related subjects see [6], [8] and [10]. In this paper, we study

the metric dimension of Cayley graphs on dihedral groups and we characterize all of Cayley

graphs on dihedral groups whose metric dimension is two.

2. Main results

At first, we provide two lemmas on dihedral groups and a sharp lower bound for the metric

dimension of 3-regular bipartite graphs which will be frequently used in the sequel.

Lemma 2.1. The subset {aib, ajb} is a generating set for dihedral group D2n = ⟨a, b| an =

b2 = (ab)2 = e⟩ if and only if gcd(n, i− j) = 1.

Proof. It is strightforward to see that the subgroup generated by these elements is given by

⟨aib, ajb⟩ = {a(i−j)t, a(i−j)t+ib, a(i−j)t+jb | t ∈ Z}.
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Now since we have a ∈ ⟨ai−j⟩ if and only if gcd(n, i− j) = 1, the result follows.

Lemma 2.2. If 4 | n and gcd(i− j, n) = 2, then {a
n
2 , aib, ajb} is not a generating set for D2n.

Proof. Since ⟨ai−j⟩ and ⟨a2⟩ are two cyclic subgroups of order n
2 in the cyclic group ⟨a⟩, we have

⟨a2⟩ = ⟨ai−j⟩ ⊆ ⟨{a
n
2 , aib, ajb}⟩. Since 4 | n we have a

n
2 ∈ ⟨a2⟩ and hence, ⟨{a

n
2 , aib, ajb}⟩ =

⟨{aib, ajb}⟩. Now the result follows from Lemma 2.1.

Lemma 2.3. Let Γ be a 3-regular bipartite graph on n vertices. Then dimM (Γ) ≥ 3.

Proof. Since Γ is not a path, dimM (Γ) is at least two. Suppose that dimM (Γ) = 2 and let

W = {u, v} be a resolving set for Γ. Assume that d(u, v) = d and N(u) = {u1, u2, u3}. It is

easy to see that d(ui, v) ∈ {d−1, d, d+1}, for each 1 ≤ i ≤ 3. If there exist 1 ≤ i < j ≤ 3 such

that d(ui, v) = d(uj , v), then r(ui|W ) = r(uj |W ), which is a contradiction. Hence, without

loss of generality, we can assume that

d(u1, v) = d− 1, d(u2, v) = d, d(u3, v) = d+ 1.

Let σ1 be a (shortest) path between two vertices u and v of lengh d, and σ2 be a (shortest)

path between two vertices u2 and v. Two paths σ1 and σ2 using the edge uu2 produce an old

closed walk of lengh 2d+1 in Γ which contradicts the fact that Γ is a bipartite graph. For the

sharpness of this bound, consider the hypercube Q3 = K2 ×K2 ×K2.

In Theorem 2.4 we characterize all of Cayley graphs on dihedral groups whose metric di-

mension is two. Recall that the center of D2n is ⟨a
n
2 ⟩ when n is even, otherwise it is the trivial

subgroup {e}.

Theorem 2.4. Let S be a generating subset of D2n = ⟨a, b| an = b2 = (ab)2 = e⟩ such that

e /∈ S = S−1. Then we have dimM (Cay(D2n, S)) = 2 if and only if one of the following cases

occurs.

a) n = 2 and S ∈
{
{a, b}, {a, ab}, {b, ab}

}
,

b) n ≥ 3 and S = {aib, ajb} with gcd(i− j, n) = 1,

c) n ≥ 3 is odd and S = {ai, a−i, ajb} with gcd(i, n) = 1 and j ∈ {1, 2, ..., n}.

Proof. First suppose that dimM (Cay(D2n, S)) = 2. Since D2n is not a cyclic group, we have

|S| ≥ 2. Also, Cay(D2n, S) is |S|-regular and part (2) of Theorem 1.1 implies that |S| ≤ 3.

Thus, 2 ≤ |S| ≤ 3. If |S| = 2, then Cay(D2n, S) is a connected 2-regular graph (a cycle)

and dimM (Cay(D2n, S)) = 2. Moreover, with the assumption S = {x, y}, since S = S−1

and D2n is not cyclic, we have y ̸= x−1 and x2 = y2 = e. If S = {a
n
2 , ajb} for some
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1 ≤ j ≤ n, then the condition D2n = ⟨S⟩ implies that n = 2, D2n = D4 = {e, a, b, ab} and

S ∈
{
{a, b}, {a, ab}, {b, ab}

}
which provides the case (a). Otherwise, S = {aib, ajb} and using

Lemma 2.1 we have gcd(i− j, n) = 1 and this provides the case (b). Now we can assume that

|S| = 3. Since S is a generating set and e /∈ S = S−1, we consider the following cases.

Case 1. S = {ai, a−i, ajb}.
Since (ajb)(ai)t(ajb) = a−it, the order of ai is n

gcd(i,n) and S is a generating set, we have

gcd(i, n) = 1. Thus o(ai) = n and vertices ani, a(n−1)i, ..., a2i, ai induce an n-cycle in

Cay(D2n, S). Since aj ∈ ⟨ai⟩, there exists k ∈ {1, 2, ..., n} such that aj = aki. Therefore

n vertices

akib, a(k+1)ib, ..., a(k+n−2)ib, a(k+n−1)ib

induce another cycle in Cay(D2n, S). Now for each 1 ≤ ℓ ≤ n let Mℓ = {aℓi, a(k+n−ℓ)ib}. Note

that ani = e and Ms ∩Mk = ∅ for each s ̸= k. Since aℓi(a(k+n−ℓ)ib)−1 = akib = ajb ∈ S, two

vertices aℓi and a(k+n−ℓ)ib are adjacent in Cay(D2n, S). Thus, the edges M1,M2, ...,Mn pro-

vide a perfect matching in Cay(D2n, S). Consequently, Cay(D2n, S) is isomorphic to P2×Cn.

Now Theorem 1.3 implies that dimM (Cay(D2n, S)) = 2 if and only if n is odd. This provides

the case (c). In the sequel we will show that other cases for S are impossimble and they will

cause some contradictions.

Case 2. S = {an/2, aib, ajb} where n is an even number.

Let x = aib and y = ajb. Since an/2 is in the center of D2n and o(a
n
2 ) = 2, we have

⟨S⟩ = ⟨aib, ajb⟩ ∪ an/2⟨aib, ajb⟩. Hence, a ∈ ⟨aib, ajb⟩ or a ∈ an/2⟨aib, ajb⟩. Note that

|⟨an/2, aib⟩| = |⟨an/2, ajb⟩| = 4.

Thus, a /∈ ⟨an/2, aib⟩ and a /∈ ⟨an/2, ajb⟩.

Subcase 2.1. a ∈ ⟨aib, ajb⟩.
In this case, using Lemma 2.1 we have gcd(i − j, n) = 1. Thus, o(xy) = o(ai−j) = n and

Cay(D2n, S) contains a Hamiltonian cycle (on 2n vertices) as below.

e ∼ y ∼ xy ∼ yxy ∼ (xy)2 ∼ y(xy)2 ∼ . . . ∼ y(xy)n−1 ∼ (xy)n = e.

For each divisor d of n the cyclic group Zn has unique cyclic subgroup of order d. Since

⟨ai−j⟩ = ⟨a⟩ and |⟨a(i−j)n
2 ⟩| = |⟨a

n
2 ⟩| = 2 , we have an/2 = (ai−j)n/2. For each 1 ≤ ℓ ≤ n

2 let

Mℓ =
{
(xy)ℓ, (xy)ℓ+n/2

}
and Tℓ =

{
y(xy)ℓ, y(xy)ℓ+n/2

}
. Note that Ms ̸= Mk and Ts ̸= Tk for

each s ̸= k. Also, each Mℓ is an edge in Cay(D2n, S) because

(xy)ℓ+n/2(xy)−ℓ = (xy)n/2 = (ai−j)n/2 = an/2 ∈ S
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Thus, {M1,M2, ...,Mn
2
} is a matching in X(Dn, S). Similarly, {T1, T2, ..., Tn

2
} is a match-

ing and hence, {M1,M2, ...,Mn
2
, T1, T2, ..., Tn

2
} provides a perfect matching for Cay(D2n, S).

Therefore, we have a cycle on 2n vertices in which its opposite pairs of vertices are adjacent

(see Figure 1 (i)). This implies that Cay(D2n, S) is a Möbius Ladder and by Theorem 1.2,

dimM (Cay(D2n, S)) is 3 or 4, which is a contradiction.

... e..

y

..

xy

..

yxy

..

(xy)2

..(xy)n/2 ..

y(xy)n/2

..

(xy)n/2+1

..

y(xy)n/2+1

..

(xy)n/2+2

..

(i)

...

e

..

y

.. xy..

yxy

.. (xy)n/2−1..

y(xy)n/2−1

..

un/2

..

yun/2

.. xyun/2..

yxyun/2

.. (xy)n/2−1un/2..

y(xy)n/2−1un/2

..

(ii)

Figure 1. (i) A Möbius Ladder graph, and (ii) the Cartesian product P2 × Cn.

Subcase 2.2. a ∈ an/2⟨aib, ajb⟩.
In this case, there exists k ∈ Z such that a = a

n
2 (ai−j)k. Hence, a

n
2
+1 ∈ ⟨ai−j⟩ and a2 =

(a
n
2
+1)2 ∈ ⟨ai−j⟩. Thus, |⟨ai−j⟩| ≥ |⟨a2⟩| = n

2 . Hence, o(ai−j) = n
2 or o(ai−j) = n. The situa-

tion o(ai−j) = n is considered in Subcase 2.1 and we can assume that o(xy) = o(ai−j) = n/2.

Therefore, Cay(D2n, S) contains two n-cycles as below.

e ∼ y ∼ xy ∼ yxy ∼ (xy)2 ∼ y(xy)2 ∼ . . . ∼ y(xy)n/2−1 ∼ (xy)n/2 = e,

an/2 ∼ yan/2 ∼ (xy)an/2 ∼ y(xy)an/2 ∼ (xy)2an/2 ∼ . . . ∼ (xy)n/2an/2 = an/2.

The fact o(xy) = n/2 implies that n vertices appeared in each cycle are distinct. Also, us-

ing the appearence of b, it is easy to see that (xy)t ̸= y(xy)sa
n
2 and y(xy)t ̸= (xy)sa

n
2 for

each t, s ∈ Z. If there exist t, s ∈ Z such that (xy)t = (xy)sa
n
2 or y(xy)t = y(xy)sa

n
2 , then

a
n
2 = (ai−j)(t−s) ∈ ⟨ai−j⟩ = ⟨a2⟩. Thus, 4 | n which is a contradiction (see Lemma 2.2).

Therefore, all of 2n vertices appeared in these cycles are distinct. Since a
n
2 ∈ S, corresponding

vertices of two cycles are adjacent (see Figure 1 (ii)). Hence, Cay(D2n, S) is isomorphic to

P2 × Cn and Theorem 1.3 implies that dimM (Cay(D2n, S)) = 3. This is a contradiction.

Case 3. S = {aib, ajb, atb}.
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Let H = ⟨a⟩ and hence, V (Cay(D2n, S)) = H ∪ Hb. If as, at ∈ H, then asa−t = as−t /∈ S.

Thus, the subset H of vertices induces an independent set in Cay(D2n, S). Similarly, Hb is

an independent set. Consequently, Cay(D2n, S) is a 3-regular bipartite graph on 2n vertices.

Now Lemma 2.3 implies that dimM (Cay(D2n, S)) is at least three, a contradiction.

For the converse suppose that one of the cases (a), (b) or (c) occurs. If case (a) or case

(b) occurs, then using Lemma 2.1, the graph Cay(D2n, S) is 2-regular and connected. Thus,

it is is a cycle and its metric dimension is two. If case (c) occurs, then using Case 1 in this

proof, we see that Cay(D2n, S) is isomorphic to P2 × Cn. Now, Theorem 1.3 implies that

dimM (Cay(D2n, S)) = 2 because n is odd. This completes the proof.
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