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ON THE EDGE-DIFFERENCE AND EDGE-SUM CHROMATIC SUM OF

THE SIMPLE GRAPHS
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Abstract. For a coloring c of a graph G, the edge-difference coloring sum and edge-sum

coloring sum with respect to the coloring c are respectively
∑

c D(G) =
∑

|c(a) − c(b)| and∑
s S(G) =

∑
(c(a) + c(b)), where the summations are taken over all edges ab ∈ E(G).

The edge-difference chromatic sum, denoted by
∑

D(G), and the edge-sum chromatic sum,

denoted by
∑

S(G), are respectively the minimum possible values of
∑

c D(G) and
∑

c S(G),

where the minimums are taken over all proper coloring of c. In this work, we study the

edge-difference chromatic sum and the edge-sum chromatic sum of graphs. In this regard, we

present some necessary conditions for the existence of homomorphism between two graphs.

Moreover, some upper and lower bounds for these parameters in terms of the fractional

chromatic number are introduced as well.

1. Introduction

The general graph proper-coloring is one of the most well-known problems in combinatorial

optimization. Besides its theoretical significance as a canonical NP-Hard problem [4], graph
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coloring arises naturally in a variety of real-world applications such as timetable problems[7],

warehouse management[5], frequency allocation in mobile network[8], register allocation in

optimizing compilers[9], scheduling problem[10], design and operation of flexible manufacturing

systems[11].

Vertex sum coloring problem is a special case of general graph coloring in which main aim

is to minimize the sum of colors, where the colors are represented by natural numbers. It is

closely related to the basic graph coloring problem and it was introduced by Kubicka [2] for

the first time. It is known to be NP-hard with several practical applications including VLSI

design, scheduling, and distributed resource allocation (see [21] for a list of references) and

also has been investigated in literature[12, 14, 15, 17, 18, 19].

Let G = (V,E) be a simple graph. A proper vertex-coloring of G is an assignment c : V → N
such that each of two adjacent vertices are received different colors. The vertex chromatic sum

of G with respect to the proper coloring c is
∑

c(G) =
∑

v∈V (G) c(v). The vertex chromatic sum

of G, denoted by
∑

G, is defined to be min
c

∑
v∈V (G)

c(v), where the minimum is taken aver all

proper-colorings of G. The vertex strength of G, denoted by s(G), is the smallest number s

such that there is a proper coloring c : V (G) −→ {1, . . . , s} for which
∑

c(G) =
∑

G.

Let G and H be two graphs. A homomorphism from G to H is a map f : V (G) −→ V (H)

which preserves adjacency, that is, if uv ∈ E(G), then f(u)f(v) ∈ E(H). Many classical

problems in combinatorics can be redefined in terms of homomorphism. For instance, the

chromatic number of a graph G, denoted by χ(G), is the minimum possible value of n for

which there is a homomorphism from G to the complete graph Kn. Also, the fractional

chromatic number of G, denoted by χf (G), is the infimum of the ratio m
n such that there is a

homomorphism from G to the Kneser graph KG(m,n). It is known that the infimum can be

replaced by minimum, see [22].

In [1], Alishahi and Taherkhani obtained a necessary condition for the existence of homo-

morphism between two graphs based on their chromatic sums. They used this result to obtain

an upper bound for the chromatic sum of a graph G in terms of its fractional chromatic number

(|V (G)|χf (G) >
∑

G). In this paper, we introduce some other necessary conditions for the

existence of homomorphism between graphs in terms of their edge-difference chromatic sum

and edge-sum chromatic sum. Using these results, we introduce some upper bounds for the

edge-difference chromatic sum and edge-sum chromatic sum of graphs based on their fractional

chromatic numbers.

The rest of this paper is organized as follows. In the first section, we will introduce edge-

difference chromatic sum, denoted by
∑

D(G), and the edge sum chromatic sum, denoted by∑
S(G). Next section is devoted to introduce Kneser graphs and find some upper bounds for

edge-difference chromatic sum and edge-sum chromatic sum of Kneser graphs. The necessary
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conditions for the existence of homomorphism between two graphs will be studied in Section 3.

Finally, two lower bounds for fractional chromatic number of graph will be introduced in

Section4.

2. The edge-difference and edge-sum chromatic sum

Definition 2.1. Let c : V → I be a proper coloring of G. The edge-difference sum coloring

and edge-sum sum coloring related to c, are indicated by
∑

cD(G) and
∑

c S(G), and defined

as follows, respectively ∑
c

D(G) =
∑

(u,v)∈E(G)

|c(u)− c(v)|,(1)

∑
c

S(G) =
∑

(u,v)∈E(G)

(c(u) + c(v)).(2)

Definition 2.2. Let C be the set of all proper coloring of G. The edge-difference chromatic

sum and edge-sum chromatic sum, are denoted by
∑

D(G) and
∑

S(G) and defined as follows,

respectively

(3)
∑

D(G) = min

{∑
c

D(G) | c ∈ C

}
,

(4)
∑

S(G) = min

{∑
c

S(G) | c ∈ C

}
and the smallest number of color c for

∑
cD(G) =

∑
D(G) and

∑
c S(G) =

∑
S(G) are

denoted by ds(G) and ss(G), respectively.

Trivially, χ(G) ≤ ds(G), and sometimes inequality strictly holds (see Figure (1)), and

ss(G) ̸= s(G) in general (see Figure (2)).

(a) χ(G) = ss(G) = 3 (b) ds(G) = 4,
∑

D(G) = 11

Figure 1. The difference chromatic sum requires 4 colors.
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(a) ss(G) = 2 (b) s(G) = 3

Figure 2. The sum chromatic sum and the vertex chromatic sum .

Assume that f is a proper coloring for vertices of G and d(v) denotes the degree of vertex v

of G. Moreover, ∑
(u,v)∈E(G)

(f(u) + f(v)) =
∑

v∈V (G)

d(u)f(u)(5)

⇒ δ
∑

v∈V (G)

f(u) ≤
∑

(u,v)∈E(G)

(f(u) + f(v)) ≤ ∆
∑

v∈V (G)

f(u),

where ∆ and δ are maximum and minimum degrees in graph G, repectively. Therefore it’s

trivial that

δmin

 ∑
v∈V (G)

f(u)

 ≤ min

 ∑
(u,v)∈E(G)

(f(u) + f(v))

 ≤ ∆min

 ∑
v∈V (G)

f(u)

(6)

⇒ δ
∑

G ≤
∑

S(G) ≤ ∆
∑

G.(7)

In fact the minimization in inequality (6) is on any proper coloring f . So, we can obtain some

upper and lower bound for
∑

G based on
∑

S(G).⌈∑
S(G)

∆

⌉
≤
∑

G ≤
⌊∑

S(G)

δ

⌋
.(8)

It should be noted that the latter bound more tightly, if the values of ∆ and δ are close to

each other(see figure (1) and (2)). Spicially for every k-regular graph we have two following

Propositions.

Proposition 2.3. For every k-regular graph G we have
∑

S(G) = k
∑

G and ss(G) = s(G).

Proposition 2.4. For every k-regular graph G, we have
∑

G∑
S(G) =

|V (G)|
2|E(G)| .

For example for Petersen graph
∑

(P ) = 19 and therefore
∑

S(G) = 3× 19 = 57.

3. The Upper bounds for
∑

D(KG(m,n)),
∑

S(KG(m,n))

Let m and n be two positive integers. We denote by [m] the set {1, 2, ...,m}, and denote

by
(
[m]
n

)
the collection of all n-subsets of [m]. The Kneser graph with parameters m and n

with m ≥ 2n, denoted by KG(m,n), is the graph with vertex set
(
[m]
n

)
such that two vertices
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are adjacent if and only if the corresponding subsets are disjoint. For i = 1, 2, ...,m − n + 1,

define Ai to be the set of all n-subsets of [m] containing i and having no intersection with

{1, 2, ..., i− 1}.
In this section, we introduce an upper bound for

∑
D(KG(m,n)) and

∑
S(KG(m,n)). It

should be noted that to avoid redundancy, details of calculation are not shown. But all of

them can be confirmed using Maple or Matlab.

Proposition 3.1. Let m and n be two positive integers, where m ≥ 2n.

a) For i = 1, 2, ...,m− n+ 1, the set Ai is an independent set of KG(m,n).

b) The sets Ai partition the vertex set of KG(m,n).

Proof. Since each element in Ai contains i, it is clear that Ai is an independent set ofKG(m,n).

Now, note that for each v ∈ V (KG(m,n)), we have v ∈ Ai, where i = min v, which implies

that the union of Ai’s is V (KG(m,n)). To complete the proof, we must show that Ai’s are

pairwise disjoint. For a contradiction, assume that there are i ̸= j ∈ [m − n + 1], such that

Ai ∩ Aj ̸= ∅. Consider v ∈ Ai ∩ Aj . Note that we must have min v = i if and only if v ∈ Ai.

This observation implies i = j = min v, which is a contradiction.

Note that |Ai| =
(
m−i
n−1

)
and |Ai+1| < |Ai| for i = 1, 2, ...,m − n + 1. Furthermore, one can

check that there is no edges between vertices in
∪m−n+1

i=m−2n+2Ai. Therefore

A1, A2, ..., Am−2n+1, Bm−2n+2

are independent sets, where

Bm−2n+2 =

m−n+1∪
i=m−2n+2

Ai.

Let G be a graph and S be an arbitrary independent set of G. As an immediate consequence

of the definition of the edge-difference chromatic sum, we have∑
D(G) ≤

∑
c′

D(G) =
∑

(u,v)∈I

|c′(u)− c′(v)|+
∑

D(G \ S),(9)

where I is the set of all edges between S and G \ S (see Figure (3)) and

c′(v) =

min {c(u)|u ∈ N(v)}+ 1 v ∈ S

c(v) v /∈ S.

Now set S = A1 and G = KG(m,n) in (9). The term
∑

(u,v)∈I |c′(u) − c′(v)| can be

calculated exactly, when we use coloring c′ for KG(m,n). With replacement in (9), we have

(10)
∑

D(KG(m,n)) ≤
∑

D(KG(m− 1, n)) +
(
m−n−1
n−1

) [(
m

n+1

)
− n−1

n+1

(
2n−1
n

)]
.
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Figure 3. S is an arbitrary independent set of G and I is the set of all edges

between S and G \ S.

By turning m to m − 1 in (10) after m − 2n iterations, the following inequality would be

obtained.∑
D(KG(m,n)) ≤m+ 1

2n+ 1

(
m− n− 1

n− 1

)(
m

n+ 1

)
− n− 1

n+ 1

(
2n− 1

n

)[(
m− n

n

)
− 1

]
−
(

2n

n+ 1

)
+
∑

D(KG(2n, n))

=
m+ 1

2n+ 1

(
m− n− 1

n− 1

)(
m

n+ 1

)
− n− 1

n+ 1

(
2n− 1

n

)[(
m− n

n

)
− 1

]
−
(

2n

n+ 1

)
+

1

2

(
2n

n

)
.

The term 1
2

(
2n
n

)
−
(

2n
n+1

)
is non-positive for n ∈ N, since

1

2

(
2n

n

)
−
(

2n

n+ 1

)
=

(2n)!

2× n!n!
− (2n)!

(n− 1)!(n+ 1)!
=

(2n)!(n+ 1)

2× n!(n+ 1)!
− (2n)!(2n)

2× (n)!(n+ 1)!

=
(2n)!(1− n)

2× (n)!(n+ 1)!
≤ 0

and so,

(11)
∑

D(KG(m,n)) ≤ m+ 1

2n+ 1

(
m− n− 1

n− 1

)(
m

n+ 1

)
.

Moreover since KG(m,n) is
(
m−n
n

)
-regular graph

∑
S(KG(m,n)) ≤

(
m− n

n

)∑
c

KG(m,n).(12)

For recent proper coloring c∑
c

KG(m,n) =|A1|+ 2|A2|+ ...+ (m− 2n+ 1)|Am−2n+1|+ (m− 2n+ 2)|Bm−2n+2|

=

(
m

n

)(
m+ 1

n+ 1
− n− 1

2n+ 2

(
2n
n

)(
m
n

) ) ,
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which is may be the exact value of
∑

KG(m,n) [1]. Therefore inequality (12) implies that∑
S(KG(m,n)) ≤

(
m− n

n

)(
m

n

)(
m+ 1

n+ 1
− n− 1

2n+ 2

(
2n
n

)(
m
n

) ) .(13)

4. Non-homomorphism theorems

One of the significant problems in graph theory is graph homomorphism which is rele-

vant to many concepts in this context. The following theorems may be considered as a

non-homomorphism theorems which provide two necessary conditions for the existence of

homomorphism from a graph G to an edge transitive graph H.

Theorem 4.1. Assume that f : G −→ H is a homomorphism where H is an edge transitive

graph. We have

ΣD(G)

|E(G)|
≤ ΣD(H)

|E(H)|
.(14)

Proof. Assume that Aut(H) = {σ1, . . . , σn}. Let G1, G2, . . . Gn be n isomorphic vertex disjoint

copies of G and set G̃ =
∪n

i=1Gi. Consider f̄ : G̃ −→ H such that the restriction of f̄ to

Gi is σiof , i.e. f̄|Gi
= σiof . It is obvious that f̄ is a homomorphism which for any edge

e = ab ∈ E(H), we have |f̄−1(e)| = n|E(G)|
|E(H)| .

Suppose that c is a coloring of H such that ΣcD(H) = ΣD(H). Naturally, this coloring implies

a coloring c̄ on the vertices of G̃. Therefore,

Σc̄D(G̃) =
n|E(G)|
|E(H)|

ΣcD(H).

Thus, there is an i such that the restriction of c̄ to Gi is a coloring c′ such that

Σc′D(G) ≤ 1

n
Σc̄D(G̃) =

|E(G)|
|E(H)|

ΣcD(H)

On the other hand we know ΣD(G) ≤ Σc′D(G) and so ΣD(G) ≤ |E(G)|
|E(H)|ΣcD(H) which com-

pletes the proof.

By the same argument as in proof of theorem (4.1) the next theorem can be proved.

Theorem 4.2. Assume that f : G −→ H is a homomorphism where H is an edge transitive

graph. We have

ΣS(G)

|E(G)|
≤ ΣS(H)

|E(H)|
.(15)

Inequalities (14) and (15) are two necessary conditions for the existence of homomorphism

from a graph G to an edge transitive graph H.

Corollary 4.3. There is no homomorphism from Petersen graph to C5.
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Proof. Note that C5 is an edge transitive graph and
∑

D(C5) = 6 ,
∑

S(C5) = 18. Also,∑
D(P ) = 18 ,

∑
S(P ) = 57. Accordingly, the inequality (15) does not hold but inequality

(14) holds. Therefore according to Theorem (4.2) there is no homomorphism from Petersen

graph to C5.

5. Some results and Applications

The fractional chromatic number of a graph G, denoted by χf (G), is the infimum of the

ratio m
n such that there is a homomorphism from G to KG(m,n). As shown in [22], the

infimum can be replaced by minimum. This definition shows that the Kneser graphs play the

same central role in fractional graph coloring as the complete graph in graph coloring. It is

obvious that χf (G) ≤ χ(G).

Theorem 5.1. For every graph G the following inequality holds

(16)
∑

D(G) < χf (G)|E(G)|.

Proof. Assume that χf (G) = m
n and Hom(G,KG(m,n)) ̸= ∅. According to |E(KG(m,n))| =

(m−n
n )(mn)
2 and inequality (11) and also Theorem 4.1, it can be concluded that∑

D(G) ≤
∑

D(K(m,n))
|E(G)|

|E(KG(m,n))|

≤ 2n(m+ 1)

(n+ 1)(2n+ 1)
|E(G)| ≤ m+ 1

n+ 1
|E(G)| < m

n
|E(G)| = χf (G)|E(G)|

Theorem 5.2. For every graph G,
∑

S(G) < 2χf (G)|E(G)|.

Proof. The proof is stated on inequality (13) and an argument similar to Theorem (5.1).

Now assume that G is an edge transitive graph and ω(G) is the size of maximum

clique of G. Since there exists a homomorphism from Kω(G) to G, Theorem 4.1 implies,∑
D(G) ≥ ω(G)+1

3 |E(G)| and similarly,
∑

S(G) ≥ (ω(G) + 1)|E(G)|.

The next theorem presents another upper bound for the edge-difference chromatic sum of

graphs in terms of their chromatic number.

Theorem 5.3. For every graph G we have

a)
∑

D(G) ≤ (χ(G)+1)
3 |E(G)|

b)
∑

S(G) ≤ (χ(G)− 1)|E(G)|
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Proof. Because of similarity, we just prove the first conclusion. Assume that f : G −→ Kn is

a homomorphism where χ(G) = n. By Theorem 4.1, we have ΣD(G) ≤ |E(G)
|E(Kn)|ΣD(Kn). One

can easily check that |ΣD(Kn)| = n(n−1)(n+1)
6 and therefore, we have

ΣD(G) ≤ |E(G)|(n+ 1)

3

as desired.

6. Conclusions

In this paper the edge-difference chromatic sum,
∑

D(G) and edge-sum chromatic sum,∑
S(G) as two concepts of coloring problem are introduced. According to these concepts the

necessary conditions for the existence homomorphism between two graphs are given. As a

result of this condition, we presented some lower bounds for χf (G). Moreover these bounds

will be better if
∑

D(KG(m,n)) and
∑

S(KG(m,n)) are accurately calculated.
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