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THE MAIN EIGENVALUES OF THE UNDIRECTED POWER GRAPH OF

A GROUP

MEHRNOOSH JAVARSINEH AND GHOLAM HOSSEIN FATH-TABAR∗

Communicated by A.R. Ashrafi

Abstract. The undirected power graph of a finite group G, P (G), is a graph with the group

elements of G as vertices and two vertices are adjacent if and only if one of them is a power of

the other. Let A be an adjacency matrix of P (G). An eigenvalue λ of A is a main eigenvalue

if the eigenspace ε(λ) has an eigenvector X such that Xtj 6= 0, where j is the all-one vector.

In this paper we want to focus on the power graph of the finite cyclic group Zn and find a

condition on n where P (Zn) has exactly one main eigenvalue. Then we calculate the number

of main eigenvalues of P (Zn) where n has a unique prime decomposition n = prp2. We

also formulate a conjecture on the number of the main eigenvalues of P (Zn) for an arbitrary

positive integer n.

1. Introduction

All the groups and graphs are assumed to be finite. There are several constructions of

graphs from groups like Cayley graphs, Schreier coset graph, orbital digraph and etc. which

have a long history in the literature. One of the new consructions of graphs from a finite group
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G is the power graph of G which is the main concept considered in this paper. The undirected

power graph P (G) of G is a graph with V (P (G)) = G and two distinct vertices g1 and g2

are adjacent if and only if there is a positive integer k such that gk1 = g2 or g1 = gk2 . The

concept of the undirected power graph of the semigroups was first introduced by Chakrabarty

et al. in 2009 [2]. They found that for any finite group G, the power graph P (Un) is always

a connected graph. Then they presented a necessary and sufficient condition on the power

graph to be a complete graph. Good results were later obtained in this area. For example,

Cameron et al. observed that non-isomorphic finite groups may have isomorphic power graphs,

but in the case of abelian finite groups they must be isomorphic [1]. Furthermore, Pourgholi,

Yousefi-Azari and Ashrafi generalized some results of this area and gave some counterexamples

on the conjecture of Chakrabarty which state that P (G) is a Hamiltonian graph for all values

of n greater than 3 except for n = 2mp1p2...pk, where p1, p2, ..., pk are prime distinct divisors

of n, m and k are no negative integers and m ≥ 2 for k = 0, 1 and k ≥ 2 for m = 0, 1 ([7]).

In this paper we deal with specific eigenvalues of the power graph of Zn called main eigenval-

ues. An eigenvalue λ of (0, 1)-adjacency matrix A of a finite graph Γ with n vertices is a main

eigenvalue if it has a corresponding eigenvector X which is not orthogonal to all-one vector j.

By Perron Frobenuis theorem, the simple largest eigenvalue of Γ is always main, because the

corresponding eigenvector can be chosen to have all positive components. For more studies on

main eigenvalues of a graph see [3, 5, 6, 8, 9].

2. Preliminaries

Let A have the following spectral decomposition

A = λ1P1 + λ2P2+ ::: +λkPk,

where λ1, λ2, ..., λk are the main eigenvalues of Γ and P1, P2, ..., Pk are the orthogonal pro-

jections onto eigenspaces ε(λ1), ε(λ2), ..., ε(λk), respectively. Let Γ be a simple graph with

(0, 1)-adjacency matrix A and W (Γ) = (wij) is its walk matrix where wij is the number of

walks of length j with the start point vi and j be the all-one vector. We can easily see that:

W (Γ) =
[
j Aj A2j A3j ... Akj ... An−1j

]
.

We have the following theorem by [5].

Theorem 2.1. The rank of W (Γ) is equal to the number of main eigenvalues of Γ.

The number of main eigenvalues of A can explain some of the graph theoretic properties of

Γ. The following theorems give us some basic information about the structure of Γ according

to the number of its main eigenvalues:
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Theorem 2.2. [9] Let Γ be a simple graph, Γ has exactly one main eigenvalue if and only if

Γ is a regular graph. Particularly if Γ is a k-regular graph, then k is a simple eigenvalue of Γ.

Theorem 2.3. [5] Let u and v be two distinct vertices of Γ such that d(u) 6= d(v), N(u) and

N(v) are respectively the sets of neighbors of u and v and

a =
s(u)− s(v)

d(u)− d(v)
, b =

d(v)s(u)− d(u)s(v)

d(u)− d(v)
,

where s(u) =
∑

w∈N(u) d(w) and s(v) =
∑

w′∈N(v) d(w′). Then Γ has exactly two main eigen-

values λ1,2 if and only if A2j− aAj + bj = 0 and these two main eigenvalues are

λ1,2 =
a±
√
a2 − 4b

2
.

Theorem 2.4. [8] If Γ has s main eigenvalues, then the automorphism group of Γ has at least

s orbits in V (Γ).

Now, let P (Zn) be the power graph of the cyclic group of integers modulo n under usual

addition and n = pr11 p
r2
2 ...p

rs
s , where p1, p2, ..., ps are not necessarily pairwise distinct prime

divisors of n and r1, r2, ..., rs are positive integers. In the following section we find a condition

on n such that P (Zn) have exactly one main eigenvalues. In section 3, the number of main

eigenvalues of P (Zn) When all the above pi for i = 1, 2, ...s are distinct are calculated.

3. the power graph of Zn

As we mentioned before, if G is a cyclic group generated by a ∈ G, then Γ = P (G) is an

undirected graph with vertex set V (Γ) = G and two different vertices u and v are adjacent if

and only if < u > ⊆ < v > or < v > ⊆ < u >. Obviously, if G is a finite group, then P (G)

is a connected graph. In [2], it was shown the power graph of a semigroup S is complete if

and only if for any two subsemigroups S1 and S2 of S we have S1 ⊆ S2 or S2 ⊆ S1. So we

have the following theorem:

Theorem 3.1. For every finite group G, P (G) is a complete graph if and only if G is cyclic

group of order 1 or pm, where p is a prime number and m ∈ N.

We know that the elements of the group of units in the integers modulo n ( i.e. Un) are the

generators of Zn. So the elements of Un
⋃
{0} are adjacent to all other vertices of P (Zn). The

number of these vertices are

(1) |Un

⋃
{0}| = ϕ(n) + 1.

On the other hand, for every d|n, dUn = {dx;x ∈ Un} is a clique of P (Zn). If x, y are two

arbitrary distinct elements of Un, then there is a unique element r such that rx = y. So

drx = dy and then dx and dy are adjacent in P (G), which means dUn is a clique of P (G).
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Also, for every two cliques d1Un and d2Un(d1 6= d2), if one of the vertices of d1Un is adjacent

to d2y ∈ d2Un, then all of the vertices of d1Un are adjacent to d2y. Let d1x ∈ d1Un be adjacent

to d2y ∈ d2Un. Then d1x = md2y. So, for every d1z ∈ d1Un we have,

d1z = d1rx = rd1x = rmd2y = m′d2y

Thus d1z is adjacent to d2y, and we can easily see that,

(2) |dUn| = |U
(
n

d
)
| = ϕ(

n

d
).

Example 2.1. In the Figure 1 we draw the power graph of Z12 in order to see the overall

picture of the power graph. As you can see in this case n = 22.3 and graph has 5 cliques

U12
⋃
{0}, 2U12, 3U12, 22U12 and 2.3U12. Note that the edges between circles connect all the

Figure 1. The power graph of Z12.

vertices of one clique to all vertices of other clique.

Definition 3.2. An equitable partition of a graph Γ is a partition of vertices into C1, C2, ..., Cs

parts such that for every 1 ≤ i, j ≤ s, there exists a nonegative integer bij such that every

vertex vi in Ci, regardless of the choice of vi, has exactly bij neighbors in Cj . Therefore the

induced subgraph of Γ[Ci] is bii-regular.

Assume that O1, O2, ..., Os are the orbits of the automorphism group of Γ in V (Γ). This

partition of vertices into orbits is called the orbit partition of V (Γ). The following relationship

is established between these two types of partitions.

Theorem 3.3. Every orbit partition is an equitable partition.
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Proof. The proof is simple. Consider two vertices x, y in Oi. Then there is an automorphism

ϕ such that ϕ(x) = y. So x and y have the same number of neighbors in Oj because ϕ maps

Oj to Oj preserving vertices degrees. Thus the orbit partition is an equitable partition.

As you can see in Figure 1, every clique is an orbit. So according to the previous theorem,

π = {U12
⋃
{0}, 2U12, 2

2U12, 2.3U12; 3U12} is the equitable partition of V (Γ). Note that in

the general case, every equitable partition is not always an orbit partition. Consider the

following graph, You can see {1, 4} and {2, 3, 5, 6, 7, 8} formed an equitable partition for the

Figure 2. An example of equitable partition of vertices which is not an orbit partition.

following graph which are not orbits. In the next section we prove new theorems about the

main eigenvalues of P (Zn) using the concept of the equitable partitions of vertices.

4. Main theorems

Let’s begin this section with an important theorem about P (Zn) having exactly one main

eigenvalue

Theorem 4.1. P (Zn) has exactly one main eigenvalue if and only if n = pm, where p is a

prime number and m ∈ N.

Proof. If P (Zn) has exactly one main eigenvalue, then P (Zn) is a regular graph by 2.2. Clearly,

a regular power graph is complete. So by 3.1, n = pm, where p is a prime number and m is a

nonegative integer.

Conversely, let n = pm where p is a prime number and m is a nonegative integer. So

P (Zn) is a complete graph, by 3.1. On the other side, k-regular graphs has exactly one main

eigenvalue k, by 2.2. Since every complete graph with n vertices is n− 1-regular graph, P (Zn)

has exactly one main eigenvalue.

Definition 4.2. Let Γ be simple graph and π = V1, V2, ..., Vk is a partition of V (Γ). Then a

divisor of Γ denoted by Γ�π is a multidigraph with k vertices correspond to V1, V2, ..., Vk and

|N(vi)| arcs from Vi to Vj , where |N(vi)| is the number of neighbors of an arbitrary vertex vi

of Vi in Vj .
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Suppose that π is an equitable partition of V (Γ) according to the Definition 3.2. Every

walk in Γ�π has a homomorphic projection in Γ. But different walks in Γ may have the same

homomorphic projections in Γ�π. So by fixing a point in every part of π as a start point, we

have a one to one correspondence between the walks of Γ and the walks of Γ�π. The following

theorem demonstrates this fact.

Theorem 4.3. [3] The spectrum of every divior of Γ includes all the main eigenvalues of Γ.

The definition of main eigenvalue of Γ�π is quite similar to the definition of main eigenvalue

of Γ.

Definition 4.4. [9] If π = V1, V2, ..., Vk is an equitable partition of Γ with n vertices such that

for every 1 ≤ i ≤ k, |Vi| = ni, then an eigenvalue λ of Γ�π is a main eigenvalue of Γ�π if

(1) λ has a right eigenvector which is not orthogonal to the vector j(n), where

j(n) = (n1 ... nk).

(2) λ has a left eigenvector which is not orthogonal to the vector j.

If π is the discrete partition, the above definition is equivalent to that of main eigenvalue of

a graph.

The following result is due to Teranishi [9].

Theorem 4.5. Let Γ be a simple graph and π is an equitable partition of the vertices of Γ.

Then an eigenvalue λ is a main eigenvalue of Γ if and only if λ is a main eigenvalue of Γ�π.

If n = pr1p2, then by the above theorem we can calculate the number of main eigenvalues

of P (Zn) by finding the number of main eigenvalues of P (Zn)�π. Note that when using

the above theorem, π should be the equitable partition consisting of the elements of the set

{diUn; di|n}.
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The walk matrix of figure 1 with j, A(P (Z12))j, ... and A11(P (Z12))j as its columns is as

follows by use of Matlab 2015b.

W (P (Z12)) =



1 11 101 973 9257 88363 · · · 1.0e+ 010 ∗ 6.6562

1 11 101 973 9257 88363 · · · 1.0e+ 010 ∗ 6.6562

1 11 101 973 9257 88363 · · · 1.0e+ 010 ∗ 6.6562

1 11 101 973 9257 88363 · · · 1.0e+ 010 ∗ 6.6562

1 11 101 973 9257 88363 · · · 1.0e+ 010 ∗ 6.6562

1 7 71 663 6355 60515 · · · 1.0e+ 010 ∗ 4.5603

1 7 71 663 6355 60515 · · · 1.0e+ 010 ∗ 4.5603

1 9 89 843 8061 76853 · · · 1.0e+ 010 ∗ 5.791

1 9 89 843 8061 76853 · · · 1.0e+ 010 ∗ 5.791

1 9 87 825 7877 75113 · · · 1.0e+ 010 ∗ 5.6592

1 8 81 764 7315 69722 · · · 1.0e+ 010 ∗ 5.2539

1 8 81 764 7315 69722 · · · 1.0e+ 010 ∗ 5.2539



.

The walk matrix of a qoutient graph P (Z12)�π where π is an equitable partition shown in

figure 1 is

W (P (Z12)�π) =



1 11 101 973 9257 88363 · · · 1.0e+ 010 ∗ 6.6562

1 7 71 663 6355 60515 · · · 1.0e+ 010 ∗ 4.5603

1 9 89 843 8061 76853 · · · 1.0e+ 010 ∗ 5.791

1 9 87 825 7877 75113 · · · 1.0e+ 010 ∗ 5.6592

1 8 81 764 7315 69722 · · · 1.0e+ 010 ∗ 5.2539


.

As we can see, the rows of W (P (Z12)�π) are the same as W (P (Z12)) without repeated ones.

Clearly

rank(W (P (Z12))) = rank(W (P (Z12)�π)).

Let ni = |diUn| = ϕ(
n

di
), where

(3) di =

 pi−11 i = 1, 2, ..., r + 1

pi−r−11 p2 i = r + 2, ..., 2r
.
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Then,

(4) ni =



pr−11 (p1 − 1)(p2 − 1) + 1 i = 1

pi−r1 (p1 − 1)(p2 − 1) i = 2, ..., r

p2 − 1 i = r + 1

pi−41 (p1 − 1) i = r + 2, ..., 2r

.

The adjacency matrix A = [aij ] of P (Zn)�π = [aij ] is defined as follows:

aij =


nj i 6= j, gcd(di, dj) 6= 1

0 i 6= j, gcd(di, dj) = 1

ni − 1 i = j

.

Now, we are ready to prove the following theorem:

Theorem 4.6. P (Zp1p2) has exactly three main eigenvalues.

Figure 3. The power graph of Zp1p2

Proof. By looking at Figure 3, we can easily see that the automorphism group of P (Zp1p2) has

exactly three orbits Up1p2

⋃
{0}, p1Up1−1p2 and p2Up1p2 . In this case the adjacency matrix of

P (Zp1p2)�π is:

AGE =


n1 − 1 n2 n3

n1 n2 − 1 0

n1 0 n3 − 1

 .
Let λ be an eigenvalue of A with corresponding eigenvector X = [x1 x2 x3]

t. We claim that λ

is a main eigenvalue of P (Zp1p2). On the contrary, let X is orthogonal to the vector j(n). So

n1x1 + n2x2 + n3x3 = 0. Thus by AGEX = λX,

(n1 − 1− λ)x1 + n2x2 + n3x3 = 0

n1x1 + (n2 − 1− λ)x2 = 0

n1x1 + (n3 − 1− λ)x3 = 0

.
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By solving the above equations system, we have x1 = x2 = x3 = 0 which is a contradiction.

Therefore, every eigenvalue of A is main and P (Zp1p2) has exactly three main eigenvalues.

There is another proof for Theorem 4.6 using Theorem 2.4. According to this theorem, A

has at most three main eigenvalues. Since P (Zp1p2) is not a regular graph, P (Zp1p2) has more

than one main eigenvalue by Theorem 2.2. But there is no power graph with exactly two main

eigenvalues, because if there is a graph Γ with exactly two main eigenvalues, we can choose

two vertices v and u from two different classes of our desire equitable partition and see that a

and b in Theorem 2.3 are not unique which is a contradiction, too. So P (Zp1p2) has exactly

three main eigenvalues.

Now, let W be a walk matrix of P (Zn)�π with columns j, Aj, A2j, ..., A2rj. We rename the

entries of these columns as follows

Aj =



b1,1

b1,2

b1,3
...

b1,2r+1


, A2j =



b2,1

b2,2

b2,3
...

b2,2r+1


, ..., A2rj =



b2r,1

b2r,2

b2r,3
...

b2r,2r+1


.

The following relations hold for the entries of the vector Aj.

(5) b1,j =



(
∑2r+1

i=1 ni)− 1 j = 1

(
∑2r

i=1 ni)− 1 j = 2

(
∑2r

i=1,i 6={r+2,r+3,...,r+j−1} ni)− 1, 3 ≤ j ≤ r + 1

(
∑2r+1

i=1,i 6={j−r+1,j−r+2,...,r+1} ni)− 1, r + 2 ≤ j ≤ 2r

(
∑2r+1

i=1,i 6={2,3,...,r+1} ni)− 1 j = 2r + 1

.

Also there are some relations between the entries of i-th column and the entries of i − 1-th

column as follows

(6) bi,j =



(n1 − 1)bi−1,1 +
∑2r+1

k=1,k 6=1 nkbi−1,k j = 1

(n2 − 1)bi−1,2 +
∑2r

k=1,k 6=2 nkbi−1,k j = 2

(nj − 1)bi−1,j +
∑2r

k=1,k 6=j,{r+2,r+3,...,r+j−1} nkbi−1,k, 3 ≤ j ≤ r + 1

(n2r + 1− 1)bi−1,2r+1 +
∑2r+1

k=1,k 6=2r+1,{2,3,...,r+1} nkbi−1,k j = 2r + 1

.

By using Theorem 4 we can see that,

(7) det(W ) = (−1)r
2r+1∏
i=2

nidet(V
′
1),
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where

V ′1 =



1 1− b1,2r+1 1− b1,2r+1 + b2,2r+1 ... 1− b1,2r+1 + b2,2r+1 + ...+ b2r,2r+1

1 1− b1,r+2 1− b1,r+2 + b2,r+2 ... 1− b1,r+2 + b2,r+2 + ...+ b2r,r+2

1 1− b1,r+3 1− b1,r+3 + b2,r+3 ... 1− b1,r+3 + b2,r+3 + ...+ b2r,r+3

...

1 1− b1,r+r 1− b1,r+r + b2,r+r ... 1− b1,r+r + b2,r+r + ...+ b2r,r+r

1 1− b1,3 1− b1,3 + b2,3 ... 1− b1,3 + b2,3 + ...+ b2r,3

1 1− b1,4 1− b1,4 + b2,4 ... 1− b1,4 + b2,4 + ...+ b2r,4
...

1 1− b1,r+1 1− b1,r+1 + b2,r+1 ... 1− b1,r+1 + b2,r+1 + ...+ b2r,r+1

1 1− b1,2 1− b1,2 + b2,2 ... 1− b1,2 + b2,2 + ...+ b2r,2



,

by Gaussian elimination and some factorizations. After r times doing the same on V ′1 we have,

det(W ) =
2r+1∏
i1=2

ni1

2r∏
i2=2,i2 6=r+1

ni2

2r−1∏
i3=i3 6=r+1

ni3 ...
r+2∏

ir=r−1
nirdet(Vr),

If r 6= 2 is an even number, then the columns of r × r matrix Vr are

V1 =



v11

v12

v13

v14

v15
...

v1r


, V2 =



v21

v22

v23

v24

v25
...

v2r


, V3 =



v31

v32

v33

v34

v35
...

v3r


, · · · , Vr =



vr1

vr2

vr3

vr4

vr5
...

vrr


,

where

and if r = 2

Vr =

 −n3 + n5 n3(1− b1,3)− n5(1− b1,5)

n3n4 − n2n5 −n3n4(1− b1,4) + n2n5(1− b1,2)

 .
Now, we have the following theorem:

Theorem 4.7. Let n = pr1p2, where p1 and p2 are distinct prime divisors of n. Then the

power graph P (Zn) has exactly 2r + 1 main eigenvalues.
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Figure 4. The values of vpq for 1 ≤ p, q ≤ r

Proof. We begin the proof with the case of r = 2. Using the Theorems 4.5 and , it is enough

to show that det(V1) 6= 0. By simple calculations we can see that,

det(Vr) = n23n4(b1,3 − b1,4) + n25n2(b1,5 − b1,2)

+ n2n3n5(b1,2 − b1,3) + n3n4n5(b1,5 − b1,4).(8)

On the other side, by 8

det(Vr) = n2(n
2
3 − n2 − n3n5 + 2n2n5 − n2n25 − n3n25 + n35).
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But N = n23 − n2 − n3n5 + 2n2n5 − n2n25 − n3n25 + n35 > 0, since

N = n23 − n2 − n3n5 + 2n2n5 − (n2 + n3)n
2
5 + n35

> n3(n3 − n5) + n2(2n5 − 1)− n35 + n35

> n3(n3 − n5) + n3(2n5 − 1)

= n3(n5 + n3 − 1)

> 0.

Now, let r 6= 2. By considering the elements in the first top row and the respective minors

A0, A1, ... and Ar−1 we have

det(Vr) = + [−
r+1∑
3

ni +
2r−1∑
r+2

ni + n2r+1]A0

− [−
r+1∑
3

nib1,i +

2r−1∑
r+2

nib1,i + n2r+1b1,2r+1]A1

+ [−
r+1∑
3

nib2,i +
2r−1∑
r+2

nib2,i + n2r+1b2,2r+1]A2

− ...

− [

r+1∑
3

nibr−1,i +

2r−1∑
r+2

br−1,i + n2r+1br−1,2r+1]Ar−1.

Assume that for every i = 3, ..., 2r + 1, b0,i = 1. Then for every 0 ≤ r ≤ 1, we have,

−
r+1∑
3

nibj,i +
2r−1∑
r+2

nibj,i + n2r+1bj,2r+1 > 0.
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On the other hand, for every permutation σ = (σ(1), σ(2), ..., σ(r)) in the symetric group Sr
and every As, (0 ≤ s ≤ r − 1), the following holds

As =

r�2−2∏
i=0

r+1∏
i1=r−i

ni1

2r∏
i2=2r−i

ni2

r�2−1∏
j=0

r+1∏
j1=r−j+1

nj1

2r∏
j2=2r−j

nj2

∑
σ∈Sr,σ(1)=s+1

(−1)r+s
r�2∏
k=1

bσ(2k)−1,2r−(k−1)

r�2−1∏
l=1

bσ(2l+1)−1,r−l

+

r�2−1∑
k1=0

r�2−2∏
i=0

r+1∏
i1=r−i

ni1

2r∏
i2=2r−i

ni2

r�2−1∏
j=0,j 6=k1

r+1∏
j1=r−j+1

nj1

2r∏
j2=2r−j

nj2

∑
σ∈Sr,σ(1)=s+1

(−1)r+s
r�2∏

k=1,k 6=k1+1

bσ(2k)−1,2r−(k−1)

r�2−1∏
l=1

bσ(2l+1)−1,r−lbσ(2(k1+1)−1,k1+2

+

r�2−2∑
k1=0

r�2−2∏
i=0,i 6=k1

r+1∏
i1=r−i

ni1

2r∏
i2=2r−i

ni2

r�2−1∏
j=0

r+1∏
j1=r−j+1

nj1

2r∏
j2=2r−j

nj2

k1+2∏
α1=2

nα1

k1+r+2∏
β1=r+2

nβ1n2r+1

∑
σ∈Sr,σ(1)=s+1

(−1)r+s
r�2∏
k=1

bσ(2k)−1,2r−(k−1)

r�2−1∏
l=1,l 6=k1+1

bσ(2l+1)−1,r−lbσ(2(k1+1)−1,k1+2

+ ...

+

r�2−2∏
i=0

i+2∏
α1=2

nα1

i+r+2∏
β1=r+2

n1(n2r+1)
r�2−1

r�2−1∏
j=0

j+2∏
α2=2

nα2

j+r+2∏
β2=r+2

n2(n2r+1)
r�2

∑
σ∈Sr,σ(1)=s+1

(−1)r+s
r�2∏
k=1

bσ(2k)−1,k+1

r�2−1∏
l=1

bσ(2l+1)−1,r+l+1).

. By using of (6), (5) and (4) in the above relations, we can see that for every even number s,

As has a positive value and for every odd number s, As has a negative value. This shows that

we always have det(Vr) > 0. By the same way we can show that if r is an odd number then

det(Vr) > 0. So the proof is complete and P (Zpr1p2
) has exactly 2r + 1 main eigenvalues.

Conjecture. Every power graph P (Zn) has exactly

r =
k∑

i=1

ri +
k∏

i=1

ri +
k∑

i1,i2=1,i1<i2

ri1ri2 + ...+
k∑

i1,...,ik=1,i1<...<ik

ri1 ...rik

main eigenvalues, where n = pr11 p
r2
2 p

r3
3 ...p

rk
k .
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